2005
Dynamic Properties of Network Motifs Contribute to Biological Network Organization
Prill R, Iglesias P, Levchenko A. Dynamic Properties of Network Motifs Contribute to Biological Network Organization. PLOS Biology 2005, 3: e343. PMID: 16187794, PMCID: PMC1239925, DOI: 10.1371/journal.pbio.0030343.Peer-Reviewed Original ResearchConceptsBiological networksRobust dynamical stabilityLarge-scale dynamic systemsNon-random networksBiological network organizationDeep interplayDynamical stabilityDynamical propertiesDynamic systemsSmall perturbationsExhaustive computational analysisSystem dynamicsDynamical implicationsSmaller subnetworksNon-random structureNetwork motifsNetwork structureDynamic propertiesNetworkComputational analysisPropertiesPerturbationsRobustnessDynamicsStabilityIntercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells
Levchenko A, Mehta B, Niu X, Kang G, Villafania L, Way D, Polycarpe D, Sadelain M, Larson S. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 1933-1938. PMID: 15671173, PMCID: PMC545583, DOI: 10.1073/pnas.0401851102.Peer-Reviewed Original ResearchConceptsFunctional P-gpP-gpTumor cellsMultidrug resistanceP-gp-mediated resistanceP-gp-negative cellsToxic drug concentrationsP-gp-positive cellsIntercellular transferResistant tumor cellsDifferent tumor cell typesTumor cell typesTumor massTumor stromaP-gp transferTumor typesP-glycoproteinStromal elementsDrug resistanceDrug concentrationsTumor samplesBiologic propertiesCancer therapyCell typesCells
2004
The Systems Biology of Glycosylation
Murrell M, Yarema K, Levchenko A. The Systems Biology of Glycosylation. ChemBioChem 2004, 5: 1334-1347. PMID: 15457533, DOI: 10.1002/cbic.200400143.Peer-Reviewed Original ResearchConceptsSystems biologyRegulation of differentiationRegulation of glycosylationEukaryotic cellsBiochemical systems analysisCell regulation processesCell decisionsSignal transductionGlycosylationBiologyRegulation processesRegulationTransductionApoptosisDifferentiationProfound influenceCellsNovel research methodologyRegulatory modules that generate biphasic signal response in biological systems.
Levchenko A, Bruck J, Sternberg P. Regulatory modules that generate biphasic signal response in biological systems. IET Systems Biology 2004, 1: 139-48. PMID: 17052124, DOI: 10.1049/sb:20045014.Peer-Reviewed Original Research
2002
The IκB-NF-κB Signaling Module: Temporal Control and Selective Gene Activation
Hoffmann A, Levchenko A, Scott M, Baltimore D. The IκB-NF-κB Signaling Module: Temporal Control and Selective Gene Activation. Science 2002, 298: 1241-1245. PMID: 12424381, DOI: 10.1126/science.1071914.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell NucleusChemokine CCL5Chemokine CXCL10Chemokines, CXCComputer SimulationCytoplasmDNA-Binding ProteinsElectrophoretic Mobility Shift AssayFeedback, PhysiologicalGene Expression RegulationHumansI-kappa B ProteinsMiceMice, KnockoutModels, BiologicalNF-kappa BNF-KappaB Inhibitor alphaProto-Oncogene ProteinsSignal TransductionTranscriptional ActivationTumor Cells, CulturedTumor Necrosis Factor-alphaConceptsTranscriptional activator NF-kappaBSelective gene activationKnockout cell linesTemporal controlNF-kappaB inhibitor proteinNF-kappaB responseSignaling modulesCoordinated degradationGene activationMammalian cellsNuclear localizationInhibitor proteinGene expressionIkappaB proteinsSignal-processing characteristicsEpsilon functionNF-kappaB activationCell linesNF-kappaBModeling the Cell's Guidance System
Iglesias P, Levchenko A. Modeling the Cell's Guidance System. Science Signaling 2002, 2002: re12. PMID: 12209053, DOI: 10.1126/stke.2002.148.re12.Peer-Reviewed Original ResearchModels of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils
Levchenko A, Iglesias P. Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils. Biophysical Journal 2002, 82: 50-63. PMID: 11751295, PMCID: PMC1302448, DOI: 10.1016/s0006-3495(02)75373-3.Peer-Reviewed Original ResearchConceptsPersistent signalingBiochemical signal transduction pathwaysSmall G proteinsChemotaxis of amoebaeSignal transduction pathwaysG protein activationEukaryotic cellsGradient sensingEukaryotic gradient sensingG proteinsCell typesSignal gradientExquisite precisionChemoattractant gradientPerfect adaptationSignalingAmoebaeActivatorPositive feedbackSensory systemsContinuous presenceAdaptationShallow gradientsChemoattractantInactivator
2000
Evaluation of 11C-colchicine for PET imaging of multiple drug resistance.
Levchenko A, Mehta B, Lee J, Humm J, Augensen F, Squire O, Kothari P, Finn R, Leonard E, Larson S. Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. Journal Of Nuclear Medicine 2000, 41: 493-501. PMID: 10716325.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsATP Binding Cassette Transporter, Subfamily B, Member 1Carbon RadioisotopesColchicineDrug Resistance, MultipleFlow CytometryHumansMiceMice, Inbred BALB CModels, TheoreticalNeuroblastomaRatsRats, NudeTissue DistributionTomography, Emission-ComputedTransplantation, HeterologousTumor Cells, CulturedConceptsResistant tumorsPET imagingMultiple drug resistance phenotypeDrug-resistant variantsQuality of lifeCell linesMultiple drug resistanceResistant cell linesC cell lineP-gp actionDrug resistance phenotypeEarly diagnosisNude ratsFDG scansTumorsP-glycoproteinDrug resistanceBiodistribution experimentsCytotoxic agentsChemotherapeutic interventionResistant strainsCancer cellsIntracellular accumulationVivo experimentsScans