Featured Publications
Lichen sclerosus among women with psoriasis: A cross-sectional study in the All of Us research program
Fan R, Leasure A, Little A, Cohen J. Lichen sclerosus among women with psoriasis: A cross-sectional study in the All of Us research program. Journal Of The American Academy Of Dermatology 2022, 88: 1175-1177. PMID: 36529377, DOI: 10.1016/j.jaad.2022.12.012.Peer-Reviewed Original ResearchTreatment of cutaneous lupus with topical ruxolitinib cream
Park JJ, Little AJ, Vesely MD. Treatment of cutaneous lupus with topical ruxolitinib cream. JAAD Case Reports 2022, 28: 133-135. PMID: 36159722, PMCID: PMC9494033, DOI: 10.1016/j.jdcr.2022.08.038.Peer-Reviewed Case Reports and Technical NotesDepression and Anxiety in Patients With Lichen Sclerosus
Fan R, Leasure AC, Maisha FI, Little AJ, Cohen JM. Depression and Anxiety in Patients With Lichen Sclerosus. JAMA Dermatology 2022, 158: 953-954. PMID: 35704313, PMCID: PMC9201736, DOI: 10.1001/jamadermatol.2022.1964.Peer-Reviewed Original ResearchThyroid disorders associated with lichen sclerosus: a case–control study in the All of Us Research Program
Fan R, Leasure AC, Maisha FI, Cohen JM, Little AJ. Thyroid disorders associated with lichen sclerosus: a case–control study in the All of Us Research Program. British Journal Of Dermatology 2022, 187: 797-799. PMID: 35661997, PMCID: PMC9633359, DOI: 10.1111/bjd.21702.Peer-Reviewed Original ResearchLack of association between pandemic chilblains and SARS-CoV-2 infection
Gehlhausen JR, Little AJ, Ko CJ, Emmenegger M, Lucas C, Wong P, Klein J, Lu P, Mao T, Jaycox J, Wang E, Ugwu N, Muenker C, Mekael D, Klein R, Patrignelli R, Antaya R, McNiff J, Damsky W, Kamath K, Shon J, Ring A, Yildirim I, Omer S, Ko A, Aguzzi A, Iwasaki A, Obaid A, Lu-Culligan A, Nelson A, Brito A, Nunez A, Martin A, Watkins A, Geng B, Kalinich C, Harden C, Todeasa C, Jensen C, Kim D, McDonald D, Shepard D, Courchaine E, White E, Song E, Silva E, Kudo E, DeIuliis G, Rahming H, Park H, Matos I, Nouws J, Valdez J, Fauver J, Lim J, Rose K, Anastasio K, Brower K, Glick L, Sharma L, Sewanan L, Knaggs L, Minasyan M, Batsu M, Petrone M, Kuang M, Nakahata M, Campbell M, Linehan M, Askenase M, Simonov M, Smolgovsky M, Sonnert N, Naushad N, Vijayakumar P, Martinello R, Datta R, Handoko R, Bermejo S, Prophet S, Bickerton S, Velazquez S, Alpert T, Rice T, Khoury-Hanold W, Peng X, Yang Y, Cao Y, Strong Y. Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2122090119. PMID: 35217624, PMCID: PMC8892496, DOI: 10.1073/pnas.2122090119.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionPrior SARS-CoV-2 infectionSARS-CoV-2PC biopsiesAcute respiratory syndrome coronavirus 2 pandemicSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemicT-cell receptor sequencingCell receptor sequencingT cell responsesCoronavirus 2 pandemicEnzyme-linked immunosorbent assayLack of associationCOVID toesSkin eruptionAntibody responseImmunohistochemistry studiesBackground seroprevalenceTissue microarrayViral infectionStimulation assaysCell responsesInfectionChilblainsImmunosorbent assayAbortive infectionDelayed Localized Hypersensitivity Reactions to the Moderna COVID-19 Vaccine
Johnston MS, Galan A, Watsky KL, Little AJ. Delayed Localized Hypersensitivity Reactions to the Moderna COVID-19 Vaccine. JAMA Dermatology 2021, 157: 716-720. PMID: 33978670, PMCID: PMC8117061, DOI: 10.1001/jamadermatol.2021.1214.Peer-Reviewed Original ResearchConceptsModerna COVID-19 vaccineInjection site reactionsCOVID-19 vaccineCutaneous injection-site reactionsSecond vaccine doseCase series studySkin biopsy specimenHypersensitivity reactionsVaccine doseBiopsy specimenHistopathologic examinationSeries studyRetrospective case series studyYale-New Haven HospitalFirst vaccine doseTertiary medical centerFirst-dose reactionsRelevant medical historyVaccine adverse effectsCoronavirus disease 2019 (COVID-19) pandemicDemographic informationEmergency use authorizationPfizer-BioNTech vaccinePatient demographic informationLocalized hypersensitivity reactionCutaneous Lupus Erythematosus: Current and Future Pathogenesis-Directed Therapies.
Little AJ, Vesely MD. Cutaneous Lupus Erythematosus: Current and Future Pathogenesis-Directed Therapies. The Yale Journal Of Biology And Medicine 2020, 93: 81-95. PMID: 32226339, PMCID: PMC7087060.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCutaneous lupus erythematosusDevelopment of CLEDisease pathogenesisAdaptive immune componentsClinical trial landscapeUnmet medical needFuture therapeutic strategiesPromising clinical trialsFuture pathogenesisLupus erythematosusSignificant morbidityAutoimmune diseasesImmune cellsClinical trialsCurrent treatmentTrial landscapeImmune componentsTherapeutic strategiesDrug AdministrationMedical needDiseasePathogenesisEnvironmental triggersTherapyType IHIF-1 regulates pathogenic cytotoxic T cells in lupus skin disease
Little A, Chen P, Vesely M, Khan R, Fiedler J, Garritano J, Islam F, McNiff J, Craft J. HIF-1 regulates pathogenic cytotoxic T cells in lupus skin disease. JCI Insight 2023, 8: e166076. PMID: 37526979, PMCID: PMC10543720, DOI: 10.1172/jci.insight.166076.Peer-Reviewed Original ResearchConceptsCutaneous lupus erythematosusLupus skin diseaseT cellsSkin diseasesCytotoxic signatureInflammatory infiltrateHIF-1Tissue damageKidney-infiltrating T cellsSkin-infiltrating T cellsAutoimmune skin diseaseHIF-1 inhibitionSkin tissue damageLupus erythematosusSystemic diseaseTissue inflammationGranzyme BMouse modelInflammatory gene programDiseaseProtein levelsInfiltratesSkin environmentGene programPresent study
2022
Pruritic annular erythematous eruption after receiving the COVID-19 vaccine
Cross DE, Garritano J, Zubek AE, Little AJ. Pruritic annular erythematous eruption after receiving the COVID-19 vaccine. International Journal Of Women's Dermatology 2022, 8: e033. PMID: 35837337, PMCID: PMC9276362, DOI: 10.1097/jw9.0000000000000033.Peer-Reviewed Case Reports and Technical NotesTreatment of toxic epidermal necrolysis and concurrent COVID-19-associated hyperinflammatory syndrome with systemic corticosteroids and etanercept
Choi R, Garritano J, Laird M, Johnston M, Tkachenko E, Damsky W, Little AJ, McNiff J, Girardi M, Nelson CA. Treatment of toxic epidermal necrolysis and concurrent COVID-19-associated hyperinflammatory syndrome with systemic corticosteroids and etanercept. JAAD Case Reports 2022, 29: 139-141. PMID: 36160836, PMCID: PMC9485430, DOI: 10.1016/j.jdcr.2022.09.009.Peer-Reviewed Case Reports and Technical Notes
2021
Post‐COVID‐19 vaccination IgA vasculitis in an adult
Grossman ME, Appel G, Little AJ, Ko CJ. Post‐COVID‐19 vaccination IgA vasculitis in an adult. Journal Of Cutaneous Pathology 2021, 49: 385-387. PMID: 34779011, PMCID: PMC8652641, DOI: 10.1111/cup.14168.Peer-Reviewed Case Reports and Technical Notes
2015
Chapter 2 The Mechanism of V(D)J Recombination
Little A, Matthews A, Oettinger M, Roth D, Schatz D. Chapter 2 The Mechanism of V(D)J Recombination. 2015, 13-34. DOI: 10.1016/b978-0-12-397933-9.00002-3.ChaptersLymphocyte developmentNonhomologous end-joining pathwayRegulation of recombinationAntigen receptor lociEnd-joining pathwayDNA repair proteinsRecombination-activating gene 1RAG proteinsDNA breaksRecombinase machineryFunctional antigen receptorEnd processingReceptor locusGenetic instabilityGene 1Recombinase activityChromosomal translocationsDNA cleavageProtein 1Diverse repertoireRepair stepsBox protein 1Antigen receptorHigh mobility group box protein 1Recombination
2013
Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA
Little AJ, Corbett E, Ortega F, Schatz DG. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucleic Acids Research 2013, 41: 3289-3301. PMID: 23325855, PMCID: PMC3597659, DOI: 10.1093/nar/gks1461.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesFluorescence anisotropy experimentsRAG-RSS complexesHigh mobility group box proteinAbsence of DNAGroup box proteinArchitectural proteinsPulldown experimentsRAG2 bindBox proteinSignal sequenceCooperative recruitmentComplex assemblyRecombinase complexStable integrationSequence specificitySynergistic binding effectAnisotropy experimentsAddition of DNAOrder of eventsRAG1DNAHMGB1 proteinProteinConcentration-dependent manner
2010
Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination
Ji Y, Little AJ, Banerjee JK, Hao B, Oltz EM, Krangel MS, Schatz DG. Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination. Journal Of Experimental Medicine 2010, 207: 2809-2816. PMID: 21115692, PMCID: PMC3005232, DOI: 10.1084/jem.20101136.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsBinding, CompetitiveChromatin ImmunoprecipitationDNAEnhancer Elements, GeneticFemaleGene RearrangementGenes, ImmunoglobulinGenotypeHistonesHMGB1 ProteinHomeodomain ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticProtein BindingReceptors, Antigen, T-Cell, alpha-betaRecombination, GeneticTranscription, GeneticVDJ Recombinases
2004
CD1d function is regulated by microsomal triglyceride transfer protein
Brozovic S, Nagaishi T, Yoshida M, Betz S, Salas A, Chen D, Kaser A, Glickman J, Kuo T, Little A, Morrison J, Corazza N, Kim JY, Colgan SP, Young SG, Exley M, Blumberg RS. CD1d function is regulated by microsomal triglyceride transfer protein. Nature Medicine 2004, 10: 535-539. PMID: 15107843, DOI: 10.1038/nm1043.Peer-Reviewed Original ResearchConceptsMicrosomal triglyceride transfer proteinIntestinal epithelial cellsT cellsMajor histocompatibility complex class IInvariant NKT cellsInvariant T (MAIT) cellsHistocompatibility complex class INatural killer receptorsGlycolipid antigen presentationComplex class ITransfer proteinInvariant NKTCD1d expressionNKT cellsAntigen presentationKiller receptorsGlycolipid antigensCD1dConditional deletionClass IDistinct subsetsMTTP geneEpithelial cellsHepatocytesEndoplasmic reticulum
2003
Curariform Antagonists Bind in Different Orientations to Acetylcholine-binding Protein*
Gao F, Bern N, Little A, Wang HL, Hansen SB, Talley TT, Taylor P, Sine SM. Curariform Antagonists Bind in Different Orientations to Acetylcholine-binding Protein*. Journal Of Biological Chemistry 2003, 278: 23020-23026. PMID: 12682067, PMCID: PMC3191914, DOI: 10.1074/jbc.m301151200.Peer-Reviewed Original ResearchConceptsAcetylcholine-binding proteinDocking orientationTrp-53Site residuesSubunit interfaceLigand bindingProtein flexibilityAChBPNicotinic acetylcholine receptorsSide chainsTyr-89Binding sitesMutagenesisReceptor binding sitesAcetylcholine receptorsProteinSimilar ligandsDynamic structureBindingStructure-activity relationshipsMolecular dynamics simulationsEquivalent nitrogenComputational methodsStructural levelDistinct orientations