2023
Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency
Schamiloglu S, Wu H, Zhou M, Kwan A, Bender K. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. ENeuro 2023, 10: eneuro.0367-23.2023. PMID: 38151324, PMCID: PMC10755640, DOI: 10.1523/eneuro.0367-23.2023.Peer-Reviewed Original ResearchHyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice
Carrette L, Kimbrough A, Davoudian P, Kwan A, Collazo A, George O. Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice. ENeuro 2023, 10: eneuro.0019-23.2023. PMID: 37295945, PMCID: PMC10306126, DOI: 10.1523/eneuro.0019-23.2023.Peer-Reviewed Original ResearchConceptsWhole-brain functional connectivityCholinergic regionsCholinergic systemFunctional connectivityNicotine withdrawalMale miceFos expressionNicotinic receptorsBrain cholinergic systemWithdrawal-induced changesImmediate early gene FosDiscontinuation of useNicotinic acetylcholine receptorsBrain functional connectivityCholinergic neuronsBasal forebrainNicotine resultsWithdrawal symptomsCholinergic neurotransmissionMRNA expression databaseReceptor mRNANicotine dependenceAcetylcholine receptorsBaseline expressionBrain regions5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice
Jefferson S, Gregg I, Dibbs M, Liao C, Wu H, Davoudian P, Woodburn S, Wehrle P, Sprouse J, Sherwood A, Kaye A, Pittenger C, Kwan A. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 2023, 48: 1257-1266. PMID: 37015972, PMCID: PMC10354037, DOI: 10.1038/s41386-023-01572-w.Peer-Reviewed Original ResearchConceptsMouse medial frontal cortexEarly phase clinical studiesDendritic spine densityHead-twitch responseDose-dependent increaseStructural neural plasticityMedial frontal cortexSpine densityClinical studiesFrontal cortexLong-term effectsDendritic spinesMental illnessNeural plasticitySpine formationPatient accessSubjective effectsNeural consequencesPotential therapeuticsSerotonergic psychedelicsAnxiety symptomsNeural mechanismsUltrasonic vocalizationsElevated ratesMiceShared and Distinct Brain Regions Targeted for Immediate Early Gene Expression by Ketamine and Psilocybin
Davoudian P, Shao L, Kwan A. Shared and Distinct Brain Regions Targeted for Immediate Early Gene Expression by Ketamine and Psilocybin. ACS Chemical Neuroscience 2023, 14: 468-480. PMID: 36630309, PMCID: PMC9898239, DOI: 10.1021/acschemneuro.2c00637.Peer-Reviewed Original ResearchConceptsC-fos expressionBrain regionsNeural plasticityPlasticity-related gene expressionPrimary visual cortexNumerous brain regionsAnterior cingulate cortexExact brain regionsContribution of receptorsDistinct brain regionsImmediate early gene expressionDorsal rapheGlutamatergic receptorsCA1 subfieldSubanesthetic ketamineFemale miceLocus coeruleusInsular cortexSaline controlsTherapeutic effectPsilocybin administrationBasolateral amygdalaLateral habenulaCingulate cortexVisual cortex
2021
Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo
Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, Kwan AC. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 2021, 109: 2535-2544.e4. PMID: 34228959, PMCID: PMC8376772, DOI: 10.1016/j.neuron.2021.06.008.Peer-Reviewed Original ResearchConceptsFrontal cortexDendritic spinesMouse medial frontal cortexLayer 5 pyramidal neuronsSpine formation ratesApical dendritic spinesMedial frontal cortexUntapped therapeutic potentialPyramidal neuronsSingle doseExcitatory neurotransmissionBehavioral deficitsBeneficial actionsStructural remodelingSynaptic rewiringMammalian brainTherapeutic potentialNeural adaptationUse of psychedelicsSerotonergic psychedelicsSpine sizeTwo-photon microscopyCortexPsilocybinSpine
2020
Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines
Ali F, Gerhard DM, Sweasy K, Pothula S, Pittenger C, Duman RS, Kwan AC. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nature Communications 2020, 11: 72. PMID: 31911591, PMCID: PMC6946708, DOI: 10.1038/s41467-019-13809-8.Peer-Reviewed Original ResearchConceptsDendritic spinesN-methyl-D-aspartate receptor antagonistPrefrontal cortexPrefrontal dendritic spinesApical dendritic spinesSomatostatin-expressing (SST) interneuronsCortico-cortical connectivityElevated calcium levelsMedial prefrontal cortexKetamine actsAntidepressant effectsGABAergic neuronsSST interneuronsKetamine actionPyramidal neuronsNMDAR antagonismReceptor antagonistSubanesthetic ketamineSubanesthetic doseDendritic inhibitionAwake miceCortical interneuronsSynaptic inputsCalcium levelsCalcium transients