2023
Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease
Mishra-Gorur K, Barak T, Kaulen L, Henegariu O, Jin S, Aguilera S, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, K. D, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek A, Bilguvar K, Lifton R, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2214997120. PMID: 37043537, PMCID: PMC10120005, DOI: 10.1073/pnas.2214997120.Peer-Reviewed Original ResearchConceptsWild-type proteinInherited mutationsCardiac outflow tractDevelopmental heart defectsProtein functionLack ciliaPleiotropic rolesMechanistic convergenceNeural crestCiliary defectsSomatic variantsForebrain meningesCommon originDominant mannerMutationsTRAF7ZebrafishMutantsDisparate pathologiesHeterodimerizationKnockdownGeneticsProteinCiliaCongenital heart
2022
Mutation spectrum of congenital heart disease in a consanguineous Turkish population
Dong W, Kaymakcalan H, Jin SC, Diab NS, Tanıdır C, Yalcin ASY, Ercan‐Sencicek A, Mane S, Gunel M, Lifton RP, Bilguvar K, Brueckner M. Mutation spectrum of congenital heart disease in a consanguineous Turkish population. Molecular Genetics & Genomic Medicine 2022, 10: e1944. PMID: 35481623, PMCID: PMC9184665, DOI: 10.1002/mgg3.1944.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingLaterality defectsUnique genetic architectureCongenital heart diseaseConsanguineous familyGenetic architectureCausal genesCHD genesGenome analysisHomozygous variantGenetic landscapeGenetic lesionsGenomic alterationsHeart diseaseConsanguineous populationFunction variantsRecessive variantsCHD probandsGenesType of CHDMutation spectrumStructural congenital heart diseaseVariantsCHD subjectsAdditional patients
2021
PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nature Medicine 2021, 27: 2165-2175. PMID: 34887573, PMCID: PMC8768030, DOI: 10.1038/s41591-021-01572-7.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesPeptidyl-prolyl cis-transPathogenesis of IAContribution of variantsCommon genetic variantsVertebrate modelDeleterious mutationsWnt activatorAssociation studiesWhole-exome sequencingSignificant enrichmentGenetic variantsWntAngiogenesis regulatorsMutationsGene mutationsBrain angiogenesisIntracranial aneurysm ruptureJMJD6AngiogenesisCerebrovascular morphologyCerebrovascular integrityIntracerebral hemorrhageAneurysm ruptureVariantsPrevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly
Kaymakcalan H, Kaya İ, Binici N, Nikerel E, Özbaran B, Aksoy M, Erbilgin S, Özyurt G, Jahan N, Çelik D, Yararbaş K, Yalçınkaya L, Köse S, Durak S, Ercan‐Sencicek A. Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly. Molecular Genetics & Genomic Medicine 2021, 9: e1739. PMID: 34268892, PMCID: PMC8404225, DOI: 10.1002/mgg3.1739.Peer-Reviewed Original Research
2019
Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathologica 2019, 139: 415-442. PMID: 31820119, PMCID: PMC7035241, DOI: 10.1007/s00401-019-02109-6.Peer-Reviewed Original ResearchConceptsUDP-glucose pyrophosphorylase genePluripotent stem cell differentiationGenetic diseasesUnfolded protein responseVisual disturbancesAltered glycogen metabolismPremature neuronal differentiationStem cell differentiationEpileptic encephalopathyUpregulated unfolded protein responseDevelopmental delayEssential genesEssential proteinsTherapy-resistant seizuresDifferentiation defectsMutant animalsStart codonMultiple lineagesProtein responseNeural stem cellsSevere epileptic encephalopathySimilar disease mechanismsSevere developmental delayShort isoformProtein absence
2017
Novel compound heterozygous mutations in GPT2 linked to microcephaly, and intellectual developmental disability with or without spastic paraplegia
Kaymakcalan H, Yarman Y, Goc N, Toy F, Meral C, Ercan‐Sencicek A, Gunel M. Novel compound heterozygous mutations in GPT2 linked to microcephaly, and intellectual developmental disability with or without spastic paraplegia. American Journal Of Medical Genetics Part A 2017, 176: 421-425. PMID: 29226631, DOI: 10.1002/ajmg.a.38558.Peer-Reviewed Case Reports and Technical NotesConceptsNovel compound heterozygous missense variantsSpastic paraplegiaNovel compound heterozygous variantsCompound heterozygous missense variantsMissense variantsNovel compound heterozygous mutationsCompound heterozygous variantsHeterozygous missense variantsCompound heterozygous mutationsFamily membersTurkish cohortIndex patientsIntellectual developmental disabilitiesClinical phenotypeHeterozygous variantsDevelopmental delayHeterozygous mutationsAffected sisterMale siblingsUnaffected parentsFemale siblingsIntellectual disabilityDevelopmental disabilitiesSanger sequencingParaplegia
2016
Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas
Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, Ercan-Sencicek AG, Abraham BJ, Weintraub AS, Hnisz D, Simon M, Krischek B, Erson-Omay EZ, Henegariu O, Carrión-Grant G, Mishra-Gorur K, Durán D, Goldmann JE, Schramm J, Goldbrunner R, Piepmeier JM, Vortmeyer AO, Günel JM, Bilgüvar K, Yasuno K, Young RA, Günel M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics 2016, 48: 1253-1259. PMID: 27548314, PMCID: PMC5114141, DOI: 10.1038/ng.3651.Peer-Reviewed Original ResearchCatalytic DomainChromosomes, Human, Pair 22Cohort StudiesDNA Mutational AnalysisEnhancer Elements, GeneticExomeGene Expression Regulation, NeoplasticGenotypeHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMeningeal NeoplasmsMeningiomaMutationNeurofibromin 2RNA Polymerase IITumor Necrosis Factor Receptor-Associated Peptides and ProteinsClinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield
Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, Patel N, Hashem M, Ibrahim N, Abdulwahab F, Ewida N, Alsaif HS, Al sharif H, Alamoudi W, Kentab A, Bashiri FA, Alnaser M, AlWadei AH, Alfadhel M, Eyaid W, Hashem A, Al Asmari A, Saleh MM, AlSaman A, Alhasan KA, Alsughayir M, Al Shammari M, Mahmoud A, Al-Hassnan ZN, Al-Husain M, Osama Khalil R, Abd El.Meguid N, Masri A, Ali R, Ben-Omran T, El.Fishway P, Hashish A, Ercan Sencicek A, State M, Alazami AM, Salih MA, Altassan N, Arold ST, Abouelhoda M, Wakil SM, Monies D, Shaheen R, Alkuraya FS. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Molecular Psychiatry 2016, 22: 615-624. PMID: 27431290, DOI: 10.1038/mp.2016.113.Peer-Reviewed Original ResearchConceptsStandard clinical evaluationDiagnostic yieldFirst-tier testExome sequencingClinical evaluationIntellectual disabilityHigh diagnostic yieldLikely pathogenic variantsMulti-gene panelStudy cohortLikely diagnosisTreatable formID subjectsDe novo dominantPathogenic variantsHomozygous mutationRecessive variantsLines of evidencePoint mutationsCandidate genesNovel candidate genesCohortDiagnosisLikely causal variantsHigh consanguinity
2015
Integrated genomic characterization of IDH1-mutant glioma malignant progression
Bai H, Harmancı AS, Erson-Omay EZ, Li J, Coşkun S, Simon M, Krischek B, Özduman K, Omay SB, Sorensen EA, Turcan Ş, Bakırcığlu M, Carrión-Grant G, Murray PB, Clark VE, Ercan-Sencicek AG, Knight J, Sencar L, Altınok S, Kaulen LD, Gülez B, Timmer M, Schramm J, Mishra-Gorur K, Henegariu O, Moliterno J, Louvi A, Chan TA, Tannheimer SL, Pamir MN, Vortmeyer AO, Bilguvar K, Yasuno K, Günel M. Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nature Genetics 2015, 48: 59-66. PMID: 26618343, PMCID: PMC4829945, DOI: 10.1038/ng.3457.Peer-Reviewed Original ResearchConceptsDevelopmental transcription factorsActivation of MYCMalignant progressionGenomic approachesPI3K pathwayGlioma malignant progressionEpigenetic silencingIDH1 mutant gliomasTranscription factorsIntegrated genomic characterizationGenomic characterizationRTK-RASOncogenic pathwaysK pathwayClonal expansionPathwaySilencingMYCProgression
2014
Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice
Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C. Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice. Neuron 2014, 81: 77-90. PMID: 24411733, PMCID: PMC3894588, DOI: 10.1016/j.neuron.2013.10.052.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAmphetamineAnimalsBrainChildDopamine AgonistsDopamine AntagonistsExploratory BehaviorFemaleHistidine DecarboxylaseHumansMaleMaze LearningMiceMice, KnockoutMiddle AgedMutationOxazinesRacloprideRadionuclide ImagingStereotyped BehaviorTime FactorsTourette SyndromeTryptophanYoung AdultConceptsTourette syndromeHA infusionKnockout miceD2/D3 receptor bindingDecarboxylase deficiencyDopamine D2 antagonist haloperidolCortico-basal ganglia circuitsStriatal DA levelsHDC knockout miceD3 receptor bindingImmediate early gene FosD2 antagonist haloperidolRare genetic causeBiosynthesis of histamineStriatal DARare causeBasal gangliaDA levelsAntagonist haloperidolGanglia circuitsPrepulse inhibitionMiceReceptor bindingGenetic causeHistidine decarboxylase
2013
Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism
Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L, Fertuzinhos S, Miller JA, Murtha MT, Bichsel C, Niu W, Cotney J, Ercan-Sencicek AG, Gockley J, Gupta AR, Han W, He X, Hoffman EJ, Klei L, Lei J, Liu W, Liu L, Lu C, Xu X, Zhu Y, Mane SM, Lein ES, Wei L, Noonan JP, Roeder K, Devlin B, Sestan N, State MW. Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism. Cell 2013, 155: 997-1007. PMID: 24267886, PMCID: PMC3995413, DOI: 10.1016/j.cell.2013.10.020.Peer-Reviewed Original ResearchConceptsCoexpression networkASD genesComplex developmental syndromeGenome-wide sequencingCortical projection neuronsHigh-confidence ASD genesExpression data setsPleiotropic genesSpecific genesDevelopmental processesDevelopmental syndromesSequencing studiesGenesProjection neuronsCell typesBrain regionsType mutationsCommon phenotypeASD pathophysiologyPathogenesis of autismAutism spectrum disorderMutationsHuman brain regionsUnknown etiologyRecent studies
2012
Mutations in BCKD-kinase Lead to a Potentially Treatable Form of Autism with Epilepsy
Novarino G, El-Fishawy P, Kayserili H, Meguid NA, Scott EM, Schroth J, Silhavy JL, Kara M, Khalil RO, Ben-Omran T, Ercan-Sencicek AG, Hashish AF, Sanders SJ, Gupta AR, Hashem HS, Matern D, Gabriel S, Sweetman L, Rahimi Y, Harris RA, State MW, Gleeson JG. Mutations in BCKD-kinase Lead to a Potentially Treatable Form of Autism with Epilepsy. Science 2012, 338: 394-397. PMID: 22956686, PMCID: PMC3704165, DOI: 10.1126/science.1224631.Peer-Reviewed Original ResearchMeSH Keywords3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)AdolescentAmino Acids, Branched-ChainAnimalsArginineAutistic DisorderBase SequenceBrainChildChild, PreschoolDietEpilepsyFemaleHomozygoteHumansIntellectual DisabilityMaleMiceMice, KnockoutMolecular Sequence DataMutationPedigreePhosphorylationProtein FoldingProtein Structure, TertiaryRNA, MessengerYoung AdultConceptsBranched-chain ketoacid dehydrogenaseBrain amino acid profilesPlasma branched-chain amino acidsIntellectual disabilityBranched-chain amino acidsTreatable syndromeNeurobehavioral deficitsTreatable formSomatic treatmentsDietary supplementationKnockout miceEpilepsyPhosphorylation-mediated inactivationConsanguineous familyReciprocal social interactionSyndromeKetoacid dehydrogenaseAmino acid profileMessenger RNAAutism spectrum disorderE1α phosphorylationDisabilitySpectrum disorderHeterogeneous constellationAcid profileDe novo mutations revealed by whole-exome sequencing are strongly associated with autism
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Šestan N, Lifton RP, Günel M, Roeder K, Geschwind DH, Devlin B, State MW. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485: 237-241. PMID: 22495306, PMCID: PMC3667984, DOI: 10.1038/nature10945.Peer-Reviewed Original Research
2005
Sequence Variants in SLITRK1 Are Associated with Tourette's Syndrome
Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rašin M, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Šestan N, State MW. Sequence Variants in SLITRK1 Are Associated with Tourette's Syndrome. Science 2005, 310: 317-320. PMID: 16224024, DOI: 10.1126/science.1116502.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAdolescentAnimalsAttention Deficit Disorder with HyperactivityBrainChildChild, PreschoolChromosome InversionChromosome MappingChromosomes, Human, Pair 13DNADNA Mutational AnalysisFemaleFrameshift MutationHumansIn Situ Hybridization, FluorescenceMaleMembrane ProteinsMiceMutationNerve Tissue ProteinsPedigreeSequence Analysis, DNATourette SyndromeConceptsSequence variantsTourette syndromeChromosomal inversionsFrameshift mutantsCandidate genesExpression patternsControl chromosomesPrimary neuronal culturesFrameshift mutationSLITRK1Independent occurrenceMotor ticsDevelopmental neuropsychiatric disordersChronic vocalNeuronal culturesIdentical variantsUnrelated probandsBrain regionsNeuropsychiatric disordersSyndrome