1995
Mutagenesis of the COOH-terminal Region of Bacteriophage T4 regA Protein (∗)
O'Malley S, Sattar A, Williams K, Spicer E. Mutagenesis of the COOH-terminal Region of Bacteriophage T4 regA Protein (∗). Journal Of Biological Chemistry 1995, 270: 5107-5114. PMID: 7890619, DOI: 10.1074/jbc.270.10.5107.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacterial ProteinsBacteriophage T4Base SequenceBinding SitesChymotrypsinCircular DichroismCloning, MolecularDNA PrimersGenes, ViralKineticsMolecular Sequence DataMutagenesis, Site-DirectedPeptide FragmentsPoly UProtein ConformationRecombinant ProteinsSequence DeletionTranscription FactorsConceptsBacteriophage T4 regA proteinRegA proteinPhe-106Deletion mutantsWild-type regA proteinAmino acid substitutionsCOOH-terminal regionSpecific RNA ligandsT4 proteinsTranslational repressorRNA ligandsPartial proteolysisAcid substitutionsMutantsAmino acidsProteinRNAMajor siteNucleic acidsProteolysisOverall free energyChymotryptic cleavageSpecific targetsDomain structureAffinity
1992
Purification and characterization of an endo-exonuclease from adult flies of Drosophila melanogaster
Shuai K, Gupta C, Hawley R, Chase J, Stone K, Williams K. Purification and characterization of an endo-exonuclease from adult flies of Drosophila melanogaster. Nucleic Acids Research 1992, 20: 1379-1385. PMID: 1313969, PMCID: PMC312186, DOI: 10.1093/nar/20.6.1379.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino AcidsAnimalsChromatography, DEAE-CelluloseChromatography, High Pressure LiquidDNA, Single-StrandedDrosophila melanogasterElectrophoresis, Polyacrylamide GelEndonucleasesExonucleasesHot TemperatureHydrogen-Ion ConcentrationKineticsMolecular Sequence DataMolecular WeightSodium ChlorideSubstrate SpecificityUltracentrifugation
1991
Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions.
Nadler S, Merrill B, Roberts W, Keating K, Lisbin M, Barnett S, Wilson S, Williams K. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions. Biochemistry 1991, 30: 2968-76. PMID: 1848781, DOI: 10.1021/bi00225a034.Peer-Reviewed Original ResearchAmino Acid SequenceCircular DichroismDNA HelicasesDNA-Binding ProteinsHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsKineticsMolecular Sequence DataNucleic Acid DenaturationPoly A-UPoly dA-dTPolydeoxyribonucleotidesPolyribonucleotidesRibonucleoproteinsSpectrometry, FluorescenceThermodynamicsThymus Hormones[25] Identification of amino acid residues at interface of protein—Nucleic acid complexes by photochemical cross-linking
Williams K, Konigsberg W. [25] Identification of amino acid residues at interface of protein—Nucleic acid complexes by photochemical cross-linking. Methods In Enzymology 1991, 208: 516-539. PMID: 1779846, DOI: 10.1016/0076-6879(91)08027-f.Peer-Reviewed Original ResearchAdenosine TriphosphateAnimalsBinding SitesChromatography, High Pressure LiquidChromatography, Ion ExchangeColiphagesCross-Linking ReagentsDNADNA-Binding ProteinsElectrophoresis, Polyacrylamide GelEscherichia coliHumansKineticsOligodeoxyribonucleotidesPeptide FragmentsPhosphorus RadioisotopesPhotochemistryPolydeoxyribonucleotidesProtein BindingRadioisotope Dilution Technique
1990
Mammalian heterogeneous nuclear ribonucleoprotein A1. Nucleic acid binding properties of the COOH-terminal domain.
Kumar A, Casas-Finet J, Luneau C, Karpel R, Merrill B, Williams K, Wilson S. Mammalian heterogeneous nuclear ribonucleoprotein A1. Nucleic acid binding properties of the COOH-terminal domain. Journal Of Biological Chemistry 1990, 265: 17094-17100. PMID: 2145269, DOI: 10.1016/s0021-9258(17)44873-3.Peer-Reviewed Original ResearchConceptsCOOH-terminal domainNH2-terminal domainTerminal domainCOOH-terminal fragmentNucleic acid-binding proteinsCOOH-terminalHeterogeneous nuclear ribonucleoproteinsTwo-domain proteinVertebrate homologuesNucleic acidsAcid-binding proteinIntact A1Nuclear ribonucleoproteinAmino acids bindFluorescent reportersPrimary structureIntact proteinPolynucleotide latticeCore proteinProteinProteolytic fragmentsAcid bindsDNAFragmentsDomainActive nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure
Muniyappa K, Williams K, Chase J, Radding C. Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure. Nucleic Acids Research 1990, 18: 3967-3973. PMID: 2374716, PMCID: PMC331100, DOI: 10.1093/nar/18.13.3967.Peer-Reviewed Original ResearchA novel function for zinc(II) in a nucleic acid-binding protein. Contribution of zinc(II) toward the cooperativity of bacteriophage T4 gene 32 protein binding.
Nadler S, Roberts W, Shamoo Y, Williams K. A novel function for zinc(II) in a nucleic acid-binding protein. Contribution of zinc(II) toward the cooperativity of bacteriophage T4 gene 32 protein binding. Journal Of Biological Chemistry 1990, 265: 10389-10394. PMID: 2113053, DOI: 10.1016/s0021-9258(18)86958-7.Peer-Reviewed Original Research
1987
Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking.
Pandey V, Williams K, Stone K, Modak M. Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking. Biochemistry 1987, 26: 7744-8. PMID: 3322406, DOI: 10.1021/bi00398a031.Peer-Reviewed Original ResearchConceptsCross-linking reactionReversed-phase high-performance liquid chromatographyHigh-performance liquid chromatographyCross-linking sitesEscherichia coli DNA polymerase IPeptide lossKlenow fragmentChelate formLiquid chromatographyAmino acid analysisE. coli DNA Pol ISmall peptidesTryptic digestionSubstrate deoxynucleoside triphosphateHistidine residuesTryptic peptidesAmino acidsSingle peptideOptimal conditionsPeptide mappingDNA Pol IStaphylococcus aureus V8 protease digestionDNA polymerase IAcceptor sitesPeptidesThe function of zinc in gene 32 protein from T4.
Giedroc D, Keating K, Williams K, Coleman J. The function of zinc in gene 32 protein from T4. Biochemistry 1987, 26: 5251-9. PMID: 3314985, DOI: 10.1021/bi00391a007.Peer-Reviewed Original ResearchFerrate oxidation of Escherichia coli DNA polymerase-I. Identification of a methionine residue that is essential for DNA binding.
Basu A, Williams K, Modak M. Ferrate oxidation of Escherichia coli DNA polymerase-I. Identification of a methionine residue that is essential for DNA binding. Journal Of Biological Chemistry 1987, 262: 9601-9607. PMID: 3298259, DOI: 10.1016/s0021-9258(18)47976-8.Peer-Reviewed Original Research
1986
Acidic lipids enhance cathepsin D cleavage of the myelin basic protein
Williams K, Williams N, Konigsberg W, Yu R. Acidic lipids enhance cathepsin D cleavage of the myelin basic protein. Journal Of Neuroscience Research 1986, 15: 137-145. PMID: 2421004, DOI: 10.1002/jnr.490150203.Peer-Reviewed Original Research
1984
1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes.
Prigodich R, Casas-Finet J, Williams K, Konigsberg W, Coleman J. 1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes. Biochemistry 1984, 23: 522-9. PMID: 6367821, DOI: 10.1021/bi00298a019.Peer-Reviewed Original ResearchConceptsN-terminal B-domainGene 32 proteinC-terminal domainCore proteinComplex formationGene 32Bacteriophage T4Bacteriophage fdC-terminalOligonucleotide bindingChemical shift changesTyr residuesB domainAromatic residuesNucleotide basesProteinResiduesLong rotational correlation timeOligonucleotide complexesHigh affinityComplexesShift changesDomainProton resonancesRotational correlation time
1983
Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins.
Williams K, Spicer E, LoPresti M, Guggenheimer R, Chase J. Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. Journal Of Biological Chemistry 1983, 258: 3346-3355. PMID: 6298232, DOI: 10.1016/s0021-9258(18)32867-9.Peer-Reviewed Original ResearchConceptsCOOH terminusBacteriophage T4 gene 32 proteinDNA-induced conformational changesT4 gene 32 proteinConformational changesEscherichia coliHelix-destabilizing proteinGene 32 proteinE. coli DNA replicationSimilar functional domainsCOOH-terminal domainLimited proteolysis studiesEukaryotic DNADNA replicationDouble-helical DNAHomologous domainsTerminal domainFunctional domainsT4 DNAProteolysis studiesLimited proteolysisTerminal regionAmino acidsProteinHelical DNA
1979
T4 gene 32 protein trypsin-generated fragments. Fluorescence measurement of DNA-binding parameters.
Spicer E, Williams K, Konigsberg W. T4 gene 32 protein trypsin-generated fragments. Fluorescence measurement of DNA-binding parameters. Journal Of Biological Chemistry 1979, 254: 6433-6436. PMID: 221499, DOI: 10.1016/s0021-9258(18)50385-9.Peer-Reviewed Original Research
1978
Structural changes in the T4 gene 32 protein induced by DNA polynucleotides.
Williams K, Konigsberg W. Structural changes in the T4 gene 32 protein induced by DNA polynucleotides. Journal Of Biological Chemistry 1978, 253: 2463-2470. PMID: 632279, DOI: 10.1016/s0021-9258(17)38096-1.Peer-Reviewed Original ResearchConceptsGene 32 proteinT4 gene 32 proteinDNA-binding proteinsT4 DNA metabolismTryptic hydrolysisPartial trypsin digestionDNA metabolismGene 32Protein interactionsBacteriophage T4COOH terminusNH2 terminusLimited tryptic hydrolysisCooperative bindingDNA complexesDNA interactionAmino acidsProteinTrypsin digestionDNA polynucleotidesConformational probeTerminusDalton fragmentFragmentsHydrolysis
1977
Kinetic mechanism of tRNA nucleotidyltransferase from Escherichia coli.
Williams K, Schofield P. Kinetic mechanism of tRNA nucleotidyltransferase from Escherichia coli. Journal Of Biological Chemistry 1977, 252: 5589-5597. PMID: 18468, DOI: 10.1016/s0021-9258(19)63391-0.Peer-Reviewed Original ResearchPurification and some properties of Escherichia coli tRNA nucleotidyltransferase.
Schofield P, Williams K. Purification and some properties of Escherichia coli tRNA nucleotidyltransferase. Journal Of Biological Chemistry 1977, 252: 5584-5588. PMID: 328503, DOI: 10.1016/s0021-9258(19)63390-9.Peer-Reviewed Original ResearchConceptsTransition metal chelating agentsMetal chelating agentsSodium dodecyl sulfate gel electrophoresisDodecyl sulfate gel electrophoresisSulfate gel electrophoresisTurnover numberChelating agentOverall yieldMolecular weightPure enzymeIsoelectric pointKey stepIdentical isoelectric pointsSephadex chromatographyCrude extractPurificationAffinity columnGel electrophoresisEscherichia coli tRNA nucleotidyltransferaseSpecific activityAssay conditionsChromatographyEnzymeTRNA nucleotidyltransferaseOptimal assay conditions