1995
Digestion of Proteins in Gels for Sequence Analysis
Stone K, Williams K. Digestion of Proteins in Gels for Sequence Analysis. Current Protocols In Protein Science 1995, 00: 11.3.1-11.3.13. DOI: 10.1002/0471140864.ps1103s00.Peer-Reviewed Original ResearchProtein samplesSDS-PAGEDigestion of proteinsSDS-polyacrylamide gelsAbsence of detergentCDNA cloningAmino terminusPartial sequencesSequencing studiesSequence analysisInternal sequencingInhibits trypsinAmino acid analysisAmount of proteinProteinAlternate protocolGel slicesAcid analysisEnzymatic cleavageReversed-phase HPLCSubsequent washing stepsResidual SDSPmol amountsCloningTerminusStructural specificity of substrate for S-adenosylmethionine protein arginine N-methyltransferases
Rawal N, Rajpurohit R, Lischwe M, Williams K, Paik W, Kim S. Structural specificity of substrate for S-adenosylmethionine protein arginine N-methyltransferases. Biochimica Et Biophysica Acta 1995, 1248: 11-18. PMID: 7536038, DOI: 10.1016/0167-4838(94)00213-z.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsMethylationMolecular Sequence DataMyelin Basic ProteinOligopeptidesPeptide FragmentsProtein-Arginine N-MethyltransferasesRatsRibonucleoproteinsS-AdenosylmethionineSubstrate SpecificityTrypsinConceptsProtein methylase IArginine residuesProtein A1Protein arginine N-methyltransferasesEnzymatic methylationPreferred amino acid sequencesArginine-methylated proteinsProtein arginine N-methyltransferaseHnRNP protein A1Arginine-rich motifAmino acid sequenceArginine N-methyltransferaseN-methyltransferasesRich motifN-terminal fragmentHPLC amino acid analysisC-terminusMethyl acceptorAmino acid analysisDisulfide bridgesS-adenosylmethionineProtein moleculesTrypsin digestionNG-monomethylarginineGood substrate
1991
State‐of‐the‐art biomolecular core facilities: a comprehensive survey1
Niece R, Beach C, Cook R, Hathaway G, Williams K. State‐of‐the‐art biomolecular core facilities: a comprehensive survey1. The FASEB Journal 1991, 5: 2756-2760. PMID: 1916100, DOI: 10.1096/fasebj.5.13.1916100.Peer-Reviewed Original ResearchAmino Acid Analysis and Sequencing — What is State-of-the-Art?
Niece R, Ericsson L, Fowler A, Smith A, Speicher D, Crabb J, Williams K. Amino Acid Analysis and Sequencing — What is State-of-the-Art? Advances In Life Sciences 1991, 133-141. DOI: 10.1007/978-3-0348-5678-2_12.Peer-Reviewed Original Research
1989
ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine- innervated brain regions. I. Amino acid sequence of ARPP-21B from bovine caudate nucleus
Williams K, Hemmings H, LoPresti M, Greengard P. ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine- innervated brain regions. I. Amino acid sequence of ARPP-21B from bovine caudate nucleus. Journal Of Neuroscience 1989, 9: 3631-3637. PMID: 2552036, PMCID: PMC6569913, DOI: 10.1523/jneurosci.09-10-03631.1989.Peer-Reviewed Original ResearchConceptsARPP-21CAMP-dependent protein kinaseMolecular massMajor cytosolic substrateDopamine-innervated brain regionsAmino acid sequenceAmino acid sequencingProtein phosphorylationCytosolic substratesProtein kinaseAcid sequenceSeryl residuesHistidinyl residuesMolecular mechanismsBovine caudate nucleusPrimary structureNH2-terminalEdman degradationDopamine-innervated regionsPolypeptide chainAmino acid analysisCysteinyl residuesGas-phase sequencingPosition 55SDS-PAGE
1988
Synthesis of the p10 single-stranded nucleic acid binding protein from murine leukemia virus.
Roberts W, Elliott J, McMurray W, Williams K. Synthesis of the p10 single-stranded nucleic acid binding protein from murine leukemia virus. Chemical Biology & Drug Design 1988, 1: 74-80. PMID: 2856555.Peer-Reviewed Original ResearchConceptsBeta strandsAlpha-helixDirect amino acid sequencingSynthetic peptide bindsMurine leukemia virus proteinsAmino acid sequencingLys-C peptidesRetroviral Gag polyproteinFasman analysisGene 32Nucleic acidsP10 proteinCircular dichroism experimentsCys-X2Cysteine positionsBacteriophage T4Endoproteinase Lys-C peptidesPrimary sequenceMurine leukemia virusNative proteinPrimary structureCys-X4Amino acid analysisProteinSimilar sequences
1987
Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking.
Pandey V, Williams K, Stone K, Modak M. Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking. Biochemistry 1987, 26: 7744-8. PMID: 3322406, DOI: 10.1021/bi00398a031.Peer-Reviewed Original ResearchConceptsCross-linking reactionReversed-phase high-performance liquid chromatographyHigh-performance liquid chromatographyCross-linking sitesEscherichia coli DNA polymerase IPeptide lossKlenow fragmentChelate formLiquid chromatographyAmino acid analysisE. coli DNA Pol ISmall peptidesTryptic digestionSubstrate deoxynucleoside triphosphateHistidine residuesTryptic peptidesAmino acidsSingle peptideOptimal conditionsPeptide mappingDNA Pol IStaphylococcus aureus V8 protease digestionDNA polymerase IAcceptor sitesPeptidesFerrate oxidation of Escherichia coli DNA polymerase-I. Identification of a methionine residue that is essential for DNA binding.
Basu A, Williams K, Modak M. Ferrate oxidation of Escherichia coli DNA polymerase-I. Identification of a methionine residue that is essential for DNA binding. Journal Of Biological Chemistry 1987, 262: 9601-9607. PMID: 3298259, DOI: 10.1016/s0021-9258(18)47976-8.Peer-Reviewed Original Research
1982
Comparative Peptide Mapping by HPLC: Identification of Single Amino Acid Substitutions in Temperature Sensitive Mutants
Williams K, L’Italien J, Guggenheimer R, Sillerud L, Spicer E, Chase J, Konigsberg W. Comparative Peptide Mapping by HPLC: Identification of Single Amino Acid Substitutions in Temperature Sensitive Mutants. Experimental Biology And Medicine 1982, 499-507. DOI: 10.1007/978-1-4612-5832-2_44.Peer-Reviewed Original ResearchPeptide mappingChemical modificationCovalent proteinComparative peptide mappingAmino acid analysisProtein structureParticular amino acid replacementsPrimary structureLac repressor moleculesHuman hemoglobinHPLCAcid analysisSubstitutionStructurePowerful approachSingle amino acid substitutionCrosslinkingMoleculesAmino acid substitutionsSubtitutionAcid substitutionsMutant proteins