Featured Publications
Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model
Zhou HJ, Qin L, Jiang Q, Murray KN, Zhang H, Li B, Lin Q, Graham M, Liu X, Grutzendler J, Min W. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nature Communications 2021, 12: 504. PMID: 33495460, PMCID: PMC7835246, DOI: 10.1038/s41467-020-20774-0.Peer-Reviewed Original ResearchConceptsCerebral cavernous malformationsCCM lesionsSmooth muscle actin-positive pericytesEndothelial cell lossRegions of brainCCM pathogenesisPost-capillary venulesCerebral hemorrhagePharmacological blockadeVascular abnormalitiesEC-specific deletionCavernous malformationsMouse modelCell lossMicrovascular bedGenetic deletionLesion formationLesionsVascular dynamicsBarrier functionMicrovascular structureTwo-photon microscopyTie2PathogenesisMice
2020
Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations
Wang K, Zhang H, He Y, Jiang Q, Tanaka Y, Park IH, Pober JS, Min W, Zhou HJ. Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 2171-2186. PMID: 32640906, DOI: 10.1161/atvbaha.120.314586.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsBrainCell CommunicationCell MovementCells, CulturedCoculture TechniquesEndothelial CellsFemaleFocal AdhesionsGene DeletionGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansMaleMembrane ProteinsMice, KnockoutMicrovesselsMyocytes, Smooth MusclePaxillinPericytesPhenotypeProtein StabilityProto-Oncogene ProteinsSignal TransductionConceptsCerebral cavernous malformationsBrain mural cellsCCM lesionsMural cellsCavernous malformationsSevere brain hemorrhageCCM pathogenesisSmooth muscle cellsWeeks of ageCell-specific deletionMural cell coverageBrain pericytesBrain hemorrhageNeonatal stageBrain vasculatureLesionsEntire brainMuscle cellsCerebral cavernous malformation 3Endothelial cellsMicePericytesSpecific deletionAdhesion formationPathogenesis
2019
Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome
Yang B, Huang Y, Zhang H, Huang Y, Zhou HJ, Young L, Xiao H, Min W. Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome. Journal Of Molecular And Cellular Cardiology 2019, 138: 291-303. PMID: 31751569, DOI: 10.1016/j.yjmcc.2019.10.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBradycardiaCardiomyopathy, DilatedEnhancer Elements, GeneticHistone DeacetylasesHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsMEF2 Transcription FactorsMice, KnockoutMitochondria, HeartModels, BiologicalOxidative StressPhenotypeProtein BindingReactive Oxygen SpeciesRNA, MessengerSick Sinus SyndromeSinoatrial NodeThioredoxinsConceptsSick sinus syndromeSinus syndromeHistone deacetylase 4Lower heart rateHeart rateHCN4 expressionConduction systemSinoatrial nodeNormal heart rateCardiac conduction systemHistone 3 acetylationMitochondrial oxidative stressSinus bradycardiaCardiac functionLox/SyndromeHeart rhythmMyosin heavy chainHistological analysisMiceDeletion miceOxidative stressWhole heartProtein levelsUnderlying mechanismCD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair
Yin M, Zhou HJ, Lin C, Long L, Yang X, Zhang H, Taylor H, Min W. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Reports 2019, 27: 2709-2724.e3. PMID: 31141693, PMCID: PMC6548470, DOI: 10.1016/j.celrep.2019.04.088.Peer-Reviewed Original ResearchConceptsEndometrial regenerationEndometrial epitheliumStem cellsLocal stem cellsEndometrial repairHuman endometriumUterine hyperplasiaStromal stem cellsCD34Regenerative capacitySM22αEpitheliumCellsProliferative signalingTranscriptional activityRepairKLF4EndometriumHyperplasiaERαProtein SUMOylationRegeneration modelMice
2017
Stromal Senp1 promotes mouse early folliculogenesis by regulating BMP4 expression
Tan S, Feng B, Yin M, Zhou HJ, Lou G, Ji W, Li Y, Min W. Stromal Senp1 promotes mouse early folliculogenesis by regulating BMP4 expression. Cell & Bioscience 2017, 7: 36. PMID: 28770041, PMCID: PMC5526272, DOI: 10.1186/s13578-017-0163-5.Peer-Reviewed Original ResearchStromal cellsFollicle maturationPremature ovarian failureOvarian follicle developmentCell-specific deletionOocyte developmentOvarian failureFollicle numberSENP1 deficiencyOvarian folliclesEarly folliculogenesisDecreased expressionFollicle developmentEarly oocyte developmentGrowth factorRegulation of BMP4Oocyte growthFolliculogenesisMiceBMP4 expressionCre systemCellsMaturationSENP1Critical role
2011
Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels.
Li S, Li T, Luo Y, Yu H, Sun Y, Zhou H, Liang X, Huang J, Tang S. Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels. Molecular Vision 2011, 17: 3566-73. PMID: 22219652, PMCID: PMC3250377.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornDextransFluorescein AngiographyFluorescein-5-isothiocyanateHeart VentriclesHumansImage Processing, Computer-AssistedInfant, NewbornInjections, IntraocularMiceMice, Inbred C57BLMolecular ImagingOxygenPerfusionRetinaRetinal VesselsRetinopathy of PrematurityReverse Transcriptase Polymerase Chain ReactionSoftwareConceptsMouse retinal vesselsRO injectionOIR miceOxygen-induced retinopathyRetro-orbital injectionLV perfusionRetinal vesselsFITC-dextranTotal retina areaArea of neovascularizationRetinal flatmountsRetinal neovascularizationVentricular perfusionNormal miceFluorescein isothiocyanate-dextranRetina areaLeft ventriclePostnatal micePerfusionMiceOrbital injectionInjectionSignificant differencesNeovascularizationVessels