Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application
Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application. Pharmacological Reviews 2012, 64: 520-539. PMID: 22544865, PMCID: PMC3400832, DOI: 10.1124/pr.111.005538.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsRetinoic acid signalingSuperfamily of enzymesCellular defense mechanismsALDH isozymesCellular homeostasisMechanism of actionAcid signalingCorneal crystallinsSubstrate specificityIsozyme-selective inhibitorsALDH enzymesToxicological functionsKey enzymeHuman ALDHHuman diseasesHuman cancersDefense mechanismsPharmacological inhibitionToxicological roleReactive aldehydesALDH inhibitorsIsozymesEnzymeUltraviolet radiation-induced damagePivotal roleThe role of hyperosmotic stress in inflammation and disease
Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. BioMolecular Concepts 2012, 3: 345-364. PMID: 22977648, PMCID: PMC3438915, DOI: 10.1515/bmc-2012-0001.Peer-Reviewed Original ResearchHyperosmotic stressNon-renal tissuesCell cycle arrestHigh extracellular osmolarityOsmolyte synthesisCytoskeletal rearrangementsRegulatory pathwaysMitochondrial depolarizationShock proteinsHyperosmotic conditionsHuman diseasesCell shrinkageDNA damageMammalian kidneyCycle arrestInner medullary regionProtein carbonylationCytoprotective mechanismsExtracellular osmolarityConcentrating mechanismAntioxidant enzymesAdaptive mechanismsPhysiological conditionsPathological consequencesOxidative stress