2022
Methods for large‐scale single mediator hypothesis testing: Possible choices and comparisons
Du J, Zhou X, Clark‐Boucher D, Hao W, Liu Y, Smith J, Mukherjee B. Methods for large‐scale single mediator hypothesis testing: Possible choices and comparisons. Genetic Epidemiology 2022, 47: 167-184. PMID: 36465006, PMCID: PMC10329872, DOI: 10.1002/gepi.22510.Peer-Reviewed Original ResearchConceptsNull hypothesisTest statisticsMediation hypothesis testingComposite null hypothesisHypothesis testingClasses of methodsFalse positive rateAlternative hypothesisSimulation studyHypothesis testing methodContinuous mediatorReference distributionSobel test statisticsContinuous outcomesExposure-mediator interactionMulti-Ethnic Study of AtherosclerosisDNA methylation sitesClassCRANMethylation sites
2021
Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes
Bi W, Zhou W, Dey R, Mukherjee B, Sampson J, Lee S. Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes. American Journal Of Human Genetics 2021, 108: 825-839. PMID: 33836139, PMCID: PMC8206161, DOI: 10.1016/j.ajhg.2021.03.019.Peer-Reviewed Original ResearchConceptsOrdinal categorical phenotypesGenome-wide association studiesCategorical phenotypesGenome-wide significant variantsRare variantsPhenotype distributionControlled type I error ratesType I error rateMixed model approachArray genotypingAssociation studiesCommon variantsQuantitative traitsSignificant variantsLogistic mixed modelsLack of analysis toolsUK BiobankLinear mixed model approachPhenotypeAssociation TestVariantsMixed modelsSignificance levelMAFTraits
2019
The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities
Beesley L, Salvatore M, Fritsche L, Pandit A, Rao A, Brummett C, Willer C, Lisabeth L, Mukherjee B. The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities. Statistics In Medicine 2019, 39: 773-800. PMID: 31859414, PMCID: PMC7983809, DOI: 10.1002/sim.8445.Peer-Reviewed Original ResearchConceptsElectronic health recordsHealth recordsMichigan Genomics InitiativeBiobank-based studiesHealth-related researchUK BiobankHealth researchDisease-gene associationsStudy designAgnostic searchBiobankDisease-treatmentInformatics infrastructureHypothesis-generating studyPhenotypic identificationGenome InitiativeMissing dataResource catalogExploratory questionsCurrent bodyBiobank researchData typesMedical researchRecruitment mechanismsPractical guidance
2013
Bayesian Analysis of Time-Series Data under Case-Crossover Designs: Posterior Equivalence and Inference
Li S, Mukherjee B, Batterman S, Ghosh M. Bayesian Analysis of Time-Series Data under Case-Crossover Designs: Posterior Equivalence and Inference. Biometrics 2013, 69: 925-936. PMID: 24289144, PMCID: PMC4108592, DOI: 10.1111/biom.12102.Peer-Reviewed Original ResearchConceptsSemi-parametric Bayesian approachLikelihood-based approachRandom nuisance parametersTime series analysisFrequentist literatureNuisance parametersDirichlet processInferential issuesConditional likelihoodPosterior distributionRisk functionTime seriesBayesian workFrequentist approachCase-crossover designSimulation studyRestrictive assumptionsBayesian approachTime Series DataLikelihood formulationBayesian methodsEquivalent resultsBayesian analysisCase-crossoverBayesian framework
2012
Efficient designs of gene–environment interaction studies: implications of Hardy–Weinberg equilibrium and gene–environment independence
Chen J, Kang G, VanderWeele T, Zhang C, Mukherjee B. Efficient designs of gene–environment interaction studies: implications of Hardy–Weinberg equilibrium and gene–environment independence. Statistics In Medicine 2012, 31: 2516-2530. PMID: 22362617, PMCID: PMC3448495, DOI: 10.1002/sim.4460.Peer-Reviewed Original ResearchConceptsPresence of G-E interactionsG-E interactionsSubsample of casesGene-environmentHardy-Weinberg equilibriumG-E independenceGene-environment interaction studiesGene-environment independenceRandom subsampleGenetic susceptibility variantsCase-control sampleEnvironmental risk factorsSusceptibility variantsExternal control dataRisk factorsGenetic effectsWald statisticInteraction studiesSubsampleVariable EControl dataEnvironmental effectsIndependenceDataWaldWhere science meets policy: comparing longitudinal and cross-sectional designs to address diarrhoeal disease burden in the developing world
Markovitz A, Goldstick J, Levy K, Cevallos W, Mukherjee B, Trostle J, Eisenberg J. Where science meets policy: comparing longitudinal and cross-sectional designs to address diarrhoeal disease burden in the developing world. International Journal Of Epidemiology 2012, 41: 504-513. PMID: 22253314, PMCID: PMC3324455, DOI: 10.1093/ije/dyr194.Peer-Reviewed Original ResearchConceptsCross-sectional studyCross-sectional designEffect estimatesLongitudinal studyRisk factorsDisease risk factorsRisk factor distributionInforming public health policyPublic health policiesPublic health communityRisk factor effectsHousehold risk factorsDiarrhoeal disease burdenFactor effect estimatesHealth policyDiarrhoeal disease surveillanceEcuadorian villageNational policy decisionsHealth communityDisease burdenCross-sectionDisease surveillanceFactor distributionRiskGeographic regions
2008
Tests for gene‐environment interaction from case‐control data: a novel study of type I error, power and designs
Mukherjee B, Ahn J, Gruber S, Rennert G, Moreno V, Chatterjee N. Tests for gene‐environment interaction from case‐control data: a novel study of type I error, power and designs. Genetic Epidemiology 2008, 32: 615-626. PMID: 18473390, DOI: 10.1002/gepi.20337.Peer-Reviewed Original ResearchConceptsGene-environment independence assumptionCase-control studyGene-environment interactionsGene-environment associationsCase-onlyCase-control study of colorectal cancerDetection of gene-environment interactionsType I errorGene-environment dependenceStudy of colorectal cancerGene-environment independenceEffect of genetic susceptibilityCase-only methodCase-only estimatorCase-control estimatorsCase-control dataGene-environment effectsCase-control designCase-control methodCase-control analysisGlutathione S-transferase M1Empirical-BayesEpidemiological researchCase-controlColorectal cancer