Featured Publications
Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off Between Bias and Efficiency
Mukherjee B, Chatterjee N. Exploiting Gene-Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes-Type Shrinkage Estimator to Trade-Off Between Bias and Efficiency. Biometrics 2007, 64: 685-694. PMID: 18162111, DOI: 10.1111/j.1541-0420.2007.00953.x.Peer-Reviewed Original ResearchConceptsGene-environment independenceShrinkage estimatorsLog odds ratio parametersCase-control dataGene-environment independence assumptionOdds ratio parametersCase-control estimatorsData-adaptive fashionData exampleProspective logistic regression analysisBinary exposureGene-environment associationsIndependence assumptionLogistic regression analysisCase-onlyMaximum likelihood frameworkEstimationSample sizeBinary genesRegression analysisChatterjeeExamplesWeighted averageAssumptions
2018
Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability
Estes J, Mukherjee B, Taylor J. Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability. Statistics In Biosciences 2018, 10: 568-586. PMID: 31123532, PMCID: PMC6529204, DOI: 10.1007/s12561-018-9217-4.Peer-Reviewed Original ResearchEmpirical Bayes estimatorsSummary-level informationConstrained maximum likelihoodBayes estimatorsEmpirical Bayes shrinkage estimatorsSimulation studyBayes shrinkage estimatorShrinkage estimatorsLikelihood estimationCovariate distributionsConditional probability distributionData applicationsTrade biasMaximum likelihoodProbability distributionLoss of efficiencyCancer Prevention TrialIndividual-level dataEstimationProstate Cancer Prevention TrialPrevention trialsInternational population
2017
Meta‐analysis of gene‐environment interaction exploiting gene‐environment independence across multiple case‐control studies
Estes J, Rice J, Li S, Stringham H, Boehnke M, Mukherjee B. Meta‐analysis of gene‐environment interaction exploiting gene‐environment independence across multiple case‐control studies. Statistics In Medicine 2017, 36: 3895-3909. PMID: 28744888, PMCID: PMC5624850, DOI: 10.1002/sim.7398.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlpha-Ketoglutarate-Dependent Dioxygenase FTOBayes TheoremBiasBiometryBody Mass IndexCase-Control StudiesComputer SimulationDiabetes Mellitus, Type 2Gene-Environment InteractionHumansLogistic ModelsMeta-Analysis as TopicModels, GeneticModels, StatisticalPolymorphism, Single NucleotideRetrospective StudiesConceptsGene-environment independenceGene-environmentEmpirical Bayes estimatorsGene-environment interactionsCase-control studyMeta-analysis settingBayes estimatorsRetrospective likelihood frameworkShrinkage estimatorsMeta-analysisTesting gene-environment interactionsCombination of estimatesFactors body mass indexSimulation studyBody mass indexUnconstrained modelLikelihood frameworkInverse varianceMeta-analysis frameworkFTO geneMass indexGenetic markersEstimationStandard alternativeChatterjee
2014
Latent variable models for gene–environment interactions in longitudinal studies with multiple correlated exposures
Tao Y, Sánchez B, Mukherjee B. Latent variable models for gene–environment interactions in longitudinal studies with multiple correlated exposures. Statistics In Medicine 2014, 34: 1227-1241. PMID: 25545894, PMCID: PMC4355187, DOI: 10.1002/sim.6401.Peer-Reviewed Original ResearchMeSH KeywordsBiostatisticsChild, PreschoolComputer SimulationEnvironmental ExposureFemaleGene-Environment InteractionHemochromatosis ProteinHistocompatibility Antigens Class IHumansInfantInfant, NewbornLead PoisoningLongitudinal StudiesMembrane ProteinsMexicoModels, GeneticModels, StatisticalPolymorphism, Single NucleotidePregnancyPrenatal Exposure Delayed EffectsConceptsGene-environment interactionsOutcome measuresCohort studyHealth effects of environmental exposuresEnvironmental exposuresInvestigate health effectsGene-environment associationsEffects of environmental exposuresEarly life exposuresLV frameworkG x E effectsMultivariate exposuresGenotyped single nucleotide polymorphismsEffect modificationShrinkage estimatorsLife exposureExposure measurementsSingle nucleotide polymorphismsData-adaptive wayMultiple testingOutcome dataLongitudinal studyLongitudinal natureGenetic factorsNucleotide polymorphismsTesting departure from additivity in Tukey's model using shrinkage: application to a longitudinal setting
Ko Y, Mukherjee B, Smith J, Park S, Kardia S, Allison M, Vokonas P, Chen J, Diez‐Roux A. Testing departure from additivity in Tukey's model using shrinkage: application to a longitudinal setting. Statistics In Medicine 2014, 33: 5177-5191. PMID: 25112650, PMCID: PMC4227925, DOI: 10.1002/sim.6281.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAgingAtherosclerosisBone and BonesComputer SimulationEnvironmental ExposureEthnicityFemaleGene-Environment InteractionHumansIronLeadLeast-Squares AnalysisLikelihood FunctionsLongitudinal StudiesMaleMiddle AgedModels, GeneticUnited StatesUnited States Department of Veterans AffairsConceptsGene-environment interactionsMulti-Ethnic Study of AtherosclerosisModel of gene-environment interactionMulti-Ethnic StudyTukey's modelLongitudinal settingStudy of AtherosclerosisNormative Aging StudyCase-control studyIncreasing categoriesAging StudyTested interactionsLongitudinal studyCategorical variablesRobust to misspecificationInteraction termsTest departuresShrinkage estimatorsWald testInteraction estimatesIncreased powerOne-degree-of-freedom modelInteraction effectsSetsEnvironmental markers
2009
Shrinkage estimation for robust and efficient screening of single‐SNP association from case‐control genome‐wide association studies
Luo S, Mukherjee B, Chen J, Chatterjee N. Shrinkage estimation for robust and efficient screening of single‐SNP association from case‐control genome‐wide association studies. Genetic Epidemiology 2009, 33: 740-750. PMID: 19434716, PMCID: PMC3103068, DOI: 10.1002/gepi.20428.Peer-Reviewed Original ResearchMeSH KeywordsCase-Control StudiesComputational BiologyComputer SimulationData Interpretation, StatisticalFalse Positive ReactionsGenetic MarkersGenomeGenome-Wide Association StudyGenome, HumanGenotypeHumansLikelihood FunctionsModels, StatisticalPolymorphism, Single NucleotideReproducibility of ResultsConceptsHardy-Weinberg equilibriumAssociation TestPopulation-based case-control designGenome-wide association scanGenome-wide association studiesSingle-SNP associationsCase-control designCase-control studyAssociation scansAssociation studiesGenetic markersSusceptibility SNPsRecessive effectUnderlying populationAssociationFalse-positive resultsEfficient screeningSNPsRare diseaseShrinkage estimatorsSimulation studyStudyTestTwo-degrees-of-freedomPopulation