2013
Bayesian Analysis of Time-Series Data under Case-Crossover Designs: Posterior Equivalence and Inference
Li S, Mukherjee B, Batterman S, Ghosh M. Bayesian Analysis of Time-Series Data under Case-Crossover Designs: Posterior Equivalence and Inference. Biometrics 2013, 69: 925-936. PMID: 24289144, PMCID: PMC4108592, DOI: 10.1111/biom.12102.Peer-Reviewed Original ResearchConceptsSemi-parametric Bayesian approachLikelihood-based approachRandom nuisance parametersTime series analysisFrequentist literatureNuisance parametersDirichlet processInferential issuesConditional likelihoodPosterior distributionRisk functionTime seriesBayesian workFrequentist approachCase-crossover designSimulation studyRestrictive assumptionsBayesian approachTime Series DataLikelihood formulationBayesian methodsEquivalent resultsBayesian analysisCase-crossoverBayesian frameworkBayesian semiparametric analysis for two-phase studies of gene-environment interaction
Ahn J, Mukherjee B, Gruber S, Ghosh M. Bayesian semiparametric analysis for two-phase studies of gene-environment interaction. The Annals Of Applied Statistics 2013, 7: 543-569. PMID: 24587840, PMCID: PMC3935248, DOI: 10.1214/12-aoas599.Peer-Reviewed Original ResearchBayesian variable selection algorithmTwo-phase sampling designGene-environment independencePseudo-likelihood methodJoint effects of genotypeGene-environment interactionsHigh-dimensional modelsWeighted likelihoodCase-control study of colorectal cancerJoint distributionHierarchical priorsSemiparametric analysisRetrospective likelihoodGenetic markersCovariate informationLikelihood methodSimulation studyStudy of gene-environment interactionsStudy of colorectal cancerVariable selection algorithmBayesian approachPhase I dataSub-sample of casesBayesian methodsBayesian analysis
2012
Point source modeling of matched case–control data with multiple disease subtypes
Li S, Mukherjee B, Batterman S. Point source modeling of matched case–control data with multiple disease subtypes. Statistics In Medicine 2012, 31: 3617-3637. PMID: 22826092, PMCID: PMC4331356, DOI: 10.1002/sim.5388.Peer-Reviewed Original ResearchConceptsAdjacent-category logit modelMarkov chain Monte Carlo techniquesEvaluate maximum likelihoodExtensive simulation studyProfile likelihoodHierarchical Bayesian approachCase-control dataSimulation studyBayesian approachMonte Carlo techniqueBayesian methodsMaximum likelihoodMultiple disease subtypesCategorical outcomesCovariate adjustmentNonlinear modelEstimation stabilityMedicaid claims dataCase-control designPediatric asthma populationAsthma populationElevated oddsMarkovLogit modelCovariates
2010
Missing Exposure Data in Stereotype Regression Model: Application to Matched Case–Control Study with Disease Subclassification
Ahn J, Mukherjee B, Gruber S, Sinha S. Missing Exposure Data in Stereotype Regression Model: Application to Matched Case–Control Study with Disease Subclassification. Biometrics 2010, 67: 546-558. PMID: 20560931, PMCID: PMC3119773, DOI: 10.1111/j.1541-0420.2010.01453.x.Peer-Reviewed Original ResearchConceptsStereotype regression modelSubtypes of casesDeletion of observationsExpectation/conditional maximization algorithmBaseline category logit modelEstimation of model parametersMissingness mechanismData mechanismCase-control dataProportional oddsBayesian approachCategorical responsesCase-control studyCase-control study of colorectal cancerMissingnessMaximization algorithmCategorical outcomesMonte CarloModel assumptionsRegression modelsStudy of colorectal cancerModel parametersNonidentifiabilityDisease subclassificationMultinomial logit model
2009
Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis
Mukherjee B, Ahn J, Gruber S, Ghosh M, Chatterjee N. Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis. Biometrics 2009, 66: 934-948. PMID: 19930190, PMCID: PMC3103064, DOI: 10.1111/j.1541-0420.2009.01357.x.Peer-Reviewed Original ResearchConceptsGene-environment interactionsCase-control study of colorectal cancerStudy of gene-environment interactionsStudy of colorectal cancerGene-environment independenceRed meat consumptionBayesian designCase-control studyBayesian approachSample size determination criteriaCase-controlEpidemiological studiesColorectal cancerFrequentist counterpartsNatural wayMeat consumptionAnalyze current dataHypothesis testingDetermination criteriaSmokingEpidemiological exposureAnalysis strategyStudy
2008
Semiparametric Bayesian modeling of random genetic effects in family‐based association studies
Zhang L, Mukherjee B, Hu B, Moreno V, Cooney K. Semiparametric Bayesian modeling of random genetic effects in family‐based association studies. Statistics In Medicine 2008, 28: 113-139. PMID: 18792083, PMCID: PMC2684653, DOI: 10.1002/sim.3413.Peer-Reviewed Original ResearchConceptsRandom effects distributionRandom effects parametersBayesian approachProblem of estimating covarianceSensitive to parametric specificationSemiparametric Bayesian modelNonparametric Bayesian approachFixed covariate effectsFlexible Bayesian approachEffective distributionIntegrated likelihoodDirichlet processCovariate effectsNonparametric modelBayesian paradigmParametric specificationHierarchical Bayesian paradigmBayes methodologyInference problemSimulation studyRandom genetic effectsComputational advantagesCorrelation structureNumerical integration schemeTheoretical sense
2007
Semiparametric Bayesian Analysis of Case–Control Data under Conditional Gene-Environment Independence
Mukherjee B, Zhang L, Ghosh M, Sinha S. Semiparametric Bayesian Analysis of Case–Control Data under Conditional Gene-Environment Independence. Biometrics 2007, 63: 834-844. PMID: 17489972, DOI: 10.1111/j.1541-0420.2007.00750.x.Peer-Reviewed Original ResearchConceptsGene-environment independenceSemiparametric Bayesian approachTraditional logistic regression analysisParametric model assumptionsSemiparametric Bayesian modelCase-control studyPopulation-based case-control studySimulation studyBayesian approachRobust alternativeLogistic regression analysisUnderlying populationEfficient estimation techniqueBayesian modelEnvironmental exposuresModel assumptionsScientific evidenceRegression analysisAssociated with diseaseEstimation techniquesOvarian cancerControl populationPopulationIndependenceCovariates
2004
Bayesian Semiparametric Modeling for Matched Case–Control Studies with Multiple Disease States
Sinha S, Mukherjee B, Ghosh M. Bayesian Semiparametric Modeling for Matched Case–Control Studies with Multiple Disease States. Biometrics 2004, 60: 41-49. PMID: 15032772, DOI: 10.1111/j.0006-341x.2004.00169.x.Peer-Reviewed Original ResearchConceptsSemiparametric Bayesian frameworkBayesian semiparametric modelSemiparametric modelDirichlet processStratum effectsConditional likelihoodProbability of disease developmentBayesian approachNumerical integration schemeBayesian frameworkSample sizeDirichletActual estimationMLEMissingnessMarkovIntegration schemeExposure distributionBayesianEstimationRegression modelsMultiple disease statesDistributionProbabilityDisease states