2010
Thrombospondin 1, Fibronectin, and Vitronectin are Differentially Dependent Upon RAS, ERK1/2, and p38 for Induction of Vascular Smooth Muscle Cell Chemotaxis
Willis AI, Sadowitz B, Fuse S, Maier KG, Lee TS, Wang XJ, Tuszynski GP, Sumpio BE, Gahtan V. Thrombospondin 1, Fibronectin, and Vitronectin are Differentially Dependent Upon RAS, ERK1/2, and p38 for Induction of Vascular Smooth Muscle Cell Chemotaxis. Vascular And Endovascular Surgery 2010, 45: 55-62. PMID: 21193465, DOI: 10.1177/1538574410387677.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsCattleCells, CulturedChemotaxisFibronectinsHumansMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Muscle, Smooth, VascularMyocytes, Smooth MuscleP38 Mitogen-Activated Protein KinasesProtein Kinase InhibitorsRas ProteinsThrombospondin 1TransfectionVitronectinConceptsVascular smooth muscle cellsThrombospondin-1Smooth muscle cell chemotaxisFarnesyl protein transferase inhibitorSignal transduction pathwaysProtein transferase inhibitorsVascular smooth muscle cell chemotaxisBovine vascular smooth muscle cellsTSP-1Ras N17Transduction pathwaysSecond messenger systemsP38Smooth muscle cellsERK1/2VSMC migrationTransferase inhibitorsPD098059Cell chemotaxisSB202190Muscle cellsMessenger systemsVitronectinRAChemotaxis
2009
Lovastatin Inhibits Thrombospondin-1-Induced Smooth Muscle Cell Chemotaxis1
Esemuede N, Lee T, Maier KG, Sumpio BE, Gahtan V. Lovastatin Inhibits Thrombospondin-1-Induced Smooth Muscle Cell Chemotaxis1. Journal Of Surgical Research 2009, 168: 149-154. PMID: 20338582, DOI: 10.1016/j.jss.2009.11.728.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell ProliferationCells, CulturedChemotaxisDose-Response Relationship, DrugHydroxymethylglutaryl-CoA Reductase InhibitorsLovastatinMevalonic AcidModels, AnimalMonomeric GTP-Binding ProteinsMuscle, Smooth, VascularRas ProteinsSignal TransductionThrombospondin 1Tunica IntimaTunica MediaConceptsTSP-1-induced chemotaxisGeranylgeranyl transferase inhibitorSerum-free mediumThrombospondin-1HMG-CoA reductase inhibitorsVascular smooth muscle cell migrationSmooth muscle cell migrationTransferase inhibitorsEffect of lovastatinG proteinsMuscle cell migrationRas activationRho-kinase inhibitorCell migrationPost-hoc testingFarnesyl transferase inhibitorsCholesterol loweringLovastatin doseVascular restenosisIntimal hyperplasiaBoyden chamberPleiotropic propertiesReductase inhibitorsWestern blotInhibition of Ras
2008
The role of G proteins in thromospondin-1–induced vascular smooth muscle cell migration
Fuse S, Esemuede N, Yamaguchi M, Maier KG, Nesselroth SM, Sumpio BE, Gahtan V. The role of G proteins in thromospondin-1–induced vascular smooth muscle cell migration. Surgery 2008, 144: 86-92. PMID: 18571589, DOI: 10.1016/j.surg.2008.03.028.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsTSP-1-induced chemotaxisExtracellular signal-regulated kinase 1/2Pertussis toxinSerum-free mediumCholera toxinThrombospondin-1CAMP levelsP38 activationG proteinsVascular smooth muscle cell migrationQuiescent vascular smooth muscle cellsSmooth muscle cell migrationCyclic adenosine monophosphate levelsSmooth muscle cellsIntracellular cyclic adenosine monophosphate (cAMP) levelsMuscle cell migrationTSP-1 receptorAdenosine monophosphate levelsSignal-regulated kinase 1/2Levels of cAMPArterial lesionsVascular injuryVSMC chemotaxisMicrochemotaxis chamberSynergistic Effect of Cool/Thaw Cycles on Vascular Cells in an In Vitro Model of Cryoplasty
Yiu WK, Cheng SW, Sumpio BE. Synergistic Effect of Cool/Thaw Cycles on Vascular Cells in an In Vitro Model of Cryoplasty. Journal Of Vascular And Interventional Radiology 2008, 19: 925-930. PMID: 18503909, DOI: 10.1016/j.jvir.2008.02.007.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsAkt activationEndothelial cellsApoptotic smooth muscle cellsActivation of AktBovine aortic smooth muscle cellsAortic smooth muscle cellsSurvival responseDeoxynucleotidyl transferase-mediated dUTP nick end labelingFetal bovine serumTerminal deoxynucleotidyl transferase-mediated dUTP nick end labelingTransferase-mediated dUTP nick end labelingImmunoblot analysisDUTP nick end labelingHigher apoptotic rateVascular cellsThrombospondin-1-Induced Migration Is Functionally Dependent Upon Focal Adhesion Kinase
Wang XJ, Maier K, Fuse S, Willis AI, Olson E, Nesselroth S, Sumpio BE, Gahtan V. Thrombospondin-1-Induced Migration Is Functionally Dependent Upon Focal Adhesion Kinase. Vascular And Endovascular Surgery 2008, 42: 256-262. PMID: 18319354, DOI: 10.1177/1538574408314440.Peer-Reviewed Original Research
2007
Direct comparison of endothelial cell and smooth muscle cell response to supercooling and rewarming
Yiu WK, Cheng SW, Sumpio BE. Direct comparison of endothelial cell and smooth muscle cell response to supercooling and rewarming. Journal Of Vascular Surgery 2007, 46: 557-564.e2. PMID: 17826245, DOI: 10.1016/j.jvs.2007.04.072.Peer-Reviewed Original ResearchAnimalsAorta, ThoracicApoptosisBlotting, WesternCattleCell ProliferationCells, CulturedCryopreservationDensitometryEndothelial CellsEnzyme ActivationIn Situ Nick-End LabelingMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Muscle, Smooth, VascularPhosphorylationProto-Oncogene Proteins c-aktRewarming
2006
Vascular Smooth Muscle Cell Apoptosis Induced by “Supercooling” and Rewarming
Yiu WK, Cheng SW, Sumpio BE. Vascular Smooth Muscle Cell Apoptosis Induced by “Supercooling” and Rewarming. Journal Of Vascular And Interventional Radiology 2006, 17: 1971-1977. PMID: 17185696, DOI: 10.1097/01.rvi.0000244868.65867.fb.Peer-Reviewed Original Research
2005
Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis
Poussier B, Cordova AC, Becquemin JP, Sumpio BE. Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis. Journal Of Vascular Surgery 2005, 42: 1190-1190.e14. PMID: 16376213, DOI: 10.1016/j.jvs.2005.08.014.Peer-Reviewed Original ResearchMeSH KeywordsAngiogenesis InhibitorsAnimalsAnimals, NewbornAntioxidantsAorta, ThoracicApoptosisBlotting, WesternCattleCell ProliferationCells, CulturedDNADose-Response Relationship, DrugFlow CytometryIn Situ Nick-End LabelingIn Vitro TechniquesMuscle, Smooth, VascularProliferating Cell Nuclear AntigenResveratrolStilbenesConceptsSmooth muscle cell proliferationMuscle cell proliferationVascular smooth muscle cell proliferationDose-dependent mannerSMC proliferationCell proliferationG1-S phaseBeneficial effectsFrench paradoxDose-dependent apoptotic effectTerminal deoxynucleotidyl transferase-mediated dUTP-biotin nickTransferase-mediated dUTP-biotin nickCardiovascular death ratesRed wine intakeRed wine consumptionEffects of resveratrolAortic SMC proliferationEnd labeling stainingVascular SMC proliferationDUTP-biotin nickMajor polyphenol componentHealthy life styleCell cycle analysisCardiovascular mortalityFlow-activated cell sortingDifferential responsiveness of early- and late-passage endothelial cells to shear stress
Kudo FA, Warycha B, Juran PJ, Asada H, Teso D, Aziz F, Frattini J, Sumpio BE, Nishibe T, Cha C, Dardik A. Differential responsiveness of early- and late-passage endothelial cells to shear stress. The American Journal Of Surgery 2005, 190: 763-769. PMID: 16226955, DOI: 10.1016/j.amjsurg.2005.07.017.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAortaApoptosisBlotting, WesternCattleCell CountCell DivisionCell ProliferationCells, CulturedEndothelium, VascularIn Vitro TechniquesMuscle, Smooth, VascularPhosphorylationProliferating Cell Nuclear AntigenProtein Serine-Threonine KinasesProtein-Tyrosine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktShear StrengthStress, MechanicalTumor Suppressor Protein p53ConceptsLate passage endothelial cellsOrbital shear stressEarly passage cellsSmooth muscle cell migrationMuscle cell migrationEndothelial cellsSenescence modelAkt phosphorylationCell migrationProtein kinase B activationPassage cellsKinase B activationCell proliferationVascular disease increasesLate passage cellsBovine aortic endothelial cellsNuclear antigen reactivityAortic endothelial cellsEndothelial cell proliferationNeointimal hyperplasiaAntigen reactivityTotal AktBoyden chamberB activationWestern blottingSustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway
Asada H, Paszkowiak J, Teso D, Alvi K, Thorisson A, Frattini JC, Kudo FA, Sumpio BE, Dardik A. Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. Journal Of Vascular Surgery 2005, 42: 772-780. PMID: 16242567, DOI: 10.1016/j.jvs.2005.05.046.Peer-Reviewed Original ResearchConceptsOrbital shear stressPresence of PD98059Synthetic phenotypeERK1/2 pathwayExtracellular signal-regulated proteinSMC proliferationSmooth muscle cell proliferationMuscle cell proliferationPathway inhibitor PD98059Cell proliferationExtracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylationKinase 1/2 phosphorylationPresence of SB203580Bovine SMCsSMC phenotypeInhibitor PD98059Inhibitor SB203580Contractile phenotypePD98059Long-term culturePhenotypeCell nuclear antigenExpression of markersPathwaySB203580Homocysteine promotes p38-dependent chemotaxis in bovine aortic smooth muscle cells
Akasaka K, Akasaka N, Di Luozzo G, Sasajima T, Sumpio BE. Homocysteine promotes p38-dependent chemotaxis in bovine aortic smooth muscle cells. Journal Of Vascular Surgery 2005, 41: 517-522. PMID: 15838488, DOI: 10.1016/j.jvs.2004.12.043.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCattleChemotaxisEnzyme InhibitorsHomocysteineImidazolesMuscle, Smooth, VascularP38 Mitogen-Activated Protein KinasesPhosphorylationPyridinesConceptsEffect of homocysteineMigration of SMCsLevels of homocysteineProgressive intimal thickeningAortic smooth muscle cellsSmooth muscle cell migrationBovine aortic smooth muscle cellsPotential therapeutic implicationsSmooth muscle cellsP38 activationExposure of SMCMuscle cell migrationSMC chemotaxisRisk factorsSelective blockadeIntimal thickeningTherapeutic implicationsP38-dependent pathwaySMC proliferationBoyden chamberChemotactic potentialMuscle cellsHomocysteineFetal bovine serumP38 inhibitorNicotine induces mitogen-activated protein kinase dependent vascular smooth muscle cell migration
Di Luozzo G, Pradhan S, Dhadwal AK, Chen A, Ueno H, Sumpio BE. Nicotine induces mitogen-activated protein kinase dependent vascular smooth muscle cell migration. Atherosclerosis 2005, 178: 271-277. PMID: 15694934, DOI: 10.1016/j.atherosclerosis.2004.09.017.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cell migrationSmooth muscle cell migrationMuscle cell migrationInhibitors of p38VSMC migrationMitogen-activated protein kinaseEndothelial cellsDevelopment of atherosclerosisEffects of nicotineCell migrationWestern blotting methodInjury modelVascular endotheliumCigarette smokeBoyden chamber chemotaxis assaysAortic VSMCsChemotactic effectMAPKs p38NicotineChemoattractant moleculesChemotaxis assaysCellular mechanismsUltrastructural changesVSMCP44/42 activationShear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1α
Dardik A, Yamashita A, Aziz F, Asada H, Sumpio BE. Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1α. Journal Of Vascular Surgery 2005, 41: 321-331. PMID: 15768016, DOI: 10.1016/j.jvs.2004.11.016.Peer-Reviewed Original ResearchConceptsSignal transduction pathwaysPlatelet-derived growth factorSMC chemotaxisCell signal transduction pathwaysMitogen-activated protein kinase pathwaySmooth muscle cell chemotaxisERK1/2 phosphorylationPDGF-BBExtracellular signal-regulated protein kinase 1/2Pathway inhibitor PD98059Protein kinase pathwayEndothelial cellsERK1/2 signal transduction pathwayProtein kinase 1/2Vascular smooth muscle cell migrationBovine aortic endothelial cellsKinase pathwayInhibitor PD98059Smooth muscle cell migrationHemodynamic forcesKinase 1/2Platelet-derived growthMuscle cell migrationWestern blot analysisTarget pathways
2004
Vascular Smooth Muscle Cell Migration: Current Research and Clinical Implications
Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V. Vascular Smooth Muscle Cell Migration: Current Research and Clinical Implications. Vascular And Endovascular Surgery 2004, 38: 11-23. PMID: 14760473, DOI: 10.1177/153857440403800102.Peer-Reviewed Original ResearchMeSH KeywordsCell MovementEndopeptidasesExtracellular MatrixHumansIntegrinsIntercellular Signaling Peptides and ProteinsMuscle, Smooth, VascularSignal TransductionConceptsVSMC migrationVascular smooth muscle cell migrationSmooth muscle cell migrationPotential therapeutic approachMuscle cell migrationDiabetes mellitusEndothelial injuryTherapeutic approachesIntimal hyperplasiaClinical implicationsMajor causeDevelopment of strategiesInjuryCell migrationMultiple stimuliHypertensionMellitusHyperlipidemiaMorbiditySmokingHyperplasiaMortality
2003
Thrombospondin-1 induces matrix metalloproteinase-2 activation in vascular smooth muscle cells1 1Competition of interest: none.
Lee T, Esemuede N, Sumpio BE, Gahtan V. Thrombospondin-1 induces matrix metalloproteinase-2 activation in vascular smooth muscle cells1 1Competition of interest: none. Journal Of Vascular Surgery 2003, 38: 147-154. PMID: 12844104, DOI: 10.1016/s0741-5214(02)75468-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell MovementChemotaxisIn Vitro TechniquesMatrix Metalloproteinase 2Muscle, Smooth, VascularMyocytes, Smooth MuscleThrombospondin 1Up-RegulationConceptsThrombospondin-1TSP-1-induced VSMC migrationVSMC migrationCell migrationMatrix metalloproteinase-2MMP2 activationMatrix barrierSerum-free mediumNorthern blot analysisVascular smooth muscle cell migrationCellular processesExtracellular matrix glycoproteinMMP2 activityPosttranslational mechanismsMatrix metalloproteinase-2 activationMetalloproteinase-2 activationSmooth muscle cell migrationMuscle cell migrationInvasion assaysStrong binding activityBinding activityECM degradationMatrix glycoproteinRNA expressionBlot analysisThrombospondin‐1‐induced vascular smooth muscle cell chemotaxis: The role of the type 3 repeat and carboxyl terminal domains
Lee T, Nesselroth SM, Olson ET, Esemuede N, Lawler J, Sumpio BE, Gahtan V. Thrombospondin‐1‐induced vascular smooth muscle cell chemotaxis: The role of the type 3 repeat and carboxyl terminal domains. Journal Of Cellular Biochemistry 2003, 89: 500-506. PMID: 12761883, DOI: 10.1002/jcb.10524.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCells, CulturedChemotaxisEnzyme ActivationMitogen-Activated Protein KinasesMuscle, Smooth, VascularP38 Mitogen-Activated Protein KinasesThrombospondin 1ConceptsVSMC chemotaxisThrombospondin-1Acute phase reactantsSmooth muscle cell chemotaxisVascular diseaseVascular smooth muscle cell chemotaxisPhase reactantsExtracellular signal-regulated kinases 1Microchemotaxis chamberSignal-regulated kinases 1Serum-free mediumCell chemotaxisMatricellular glycoproteinActivate ERKWestern immunoblottingVSMCsT-testP38 activationP38 pathwayERKFusion proteinT3ChemotaxisKinase 1P38 kinaseInvolvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain‐induced alignment and proliferation of bovine aortic smooth muscle cells
Li W, Chen Q, Mills I, Sumpio BE. Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain‐induced alignment and proliferation of bovine aortic smooth muscle cells. Journal Of Cellular Physiology 2003, 195: 202-209. PMID: 12652647, DOI: 10.1002/jcp.10230.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCattleCell DivisionCells, CulturedDNA-Binding ProteinsEnzyme InhibitorsImidazolesImmunosuppressive AgentsMAP Kinase Signaling SystemMitogen-Activated Protein KinasesMuscle, Smooth, VascularMyocytes, Smooth MuscleP38 Mitogen-Activated Protein KinasesPyridinesRegional Blood FlowRibosomal Protein S6 KinasesSirolimusStress, MechanicalTranscription FactorsConceptsAortic smooth muscle cellsBovine aortic smooth muscle cellsKinase pathwaySmooth muscle cell phenotypeSmooth muscle cellsStrain-induced proliferationBovine aortic SMCS6 kinaseMuscle cell phenotypeSpecific inhibitorProliferation of SMCsActivation of p38SMC proliferationAortic SMCsMuscle cellsSMC alignmentModulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase
Chen Q, Li W, Quan Z, Sumpio BE. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. Journal Of Vascular Surgery 2003, 37: 660-668. PMID: 12618707, DOI: 10.1067/mva.2003.95.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCattleCells, CulturedEnzyme ActivationEnzyme InhibitorsImidazolesJNK Mitogen-Activated Protein KinasesMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesMultienzyme ComplexesMuscle, Smooth, VascularNADH, NADPH OxidoreductasesNADPH OxidasesOnium CompoundsOxidation-ReductionP38 Mitogen-Activated Protein KinasesPhosphorylationPyridinesReactive Oxygen SpeciesStress, Mechanical
2002
Photochemotherapy of vascular cells with 8‐methoxypsoralen and visible light: differential effects on endothelial and smooth muscle cells
Lee DM, Gasparro FP, Wang XJ, Kopec C, DeLeo K, Sumpio BE. Photochemotherapy of vascular cells with 8‐methoxypsoralen and visible light: differential effects on endothelial and smooth muscle cells. Photodermatology Photoimmunology & Photomedicine 2002, 18: 244-252. PMID: 12390666, DOI: 10.1034/j.1600-0781.2002.02770.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsCattleCell DivisionCell MovementCell SizeCells, CulturedChromatography, High Pressure LiquidMethoxsalenMuscle, Smooth, VascularPhotochemotherapyConceptsSmooth muscle cellsEndothelial cellsPercutaneous transluminal coronary angioplastyMuscle cellsTransluminal coronary angioplastyLong-term efficacyAortic smooth muscle cellsBovine aortic smooth muscle cellsDose-dependent fashionReversible inhibitionCoronary angioplastyIntermediate doseLow doseHigh doseSMC proliferationCell countVascular cellsDoseProliferation of ECsEC proliferationDifferential effectsProliferationCellular migrationPresent studySignificant effectInhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols
Araim O, a J, Waterhouse AL, Sumpio BE. Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. Journal Of Vascular Surgery 2002, 35: 1226-1232. PMID: 12042735, DOI: 10.1067/mva.2002.124358.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntioxidantsCattleCell DivisionCells, CulturedFlavonoidsL-Lactate DehydrogenaseMuscle, Smooth, VascularPhenolsPolymersPolyphenolsResveratrolStilbenesTrypan BlueWineConceptsRed wine polyphenol extractVascular SMC proliferationRed wine polyphenolsVascular smooth muscle cell proliferationSmooth muscle cell proliferationMuscle cell proliferationSMC proliferationAtherosclerotic diseaseBeneficial effectsWine polyphenolsVascular SMCsTrypan blue exclusion studiesDealcoholized red wineRed wine consumptionCell proliferationPolyphenol extractDose-dependent fashionInhibits SMC proliferationPotential beneficial effectsObserved beneficial effectsBovine aortic SMCDehydrogenase cytotoxicityAortic SMCsInhibitory effectRed wine