Featured Publications
Control of Spreading Depression with Electrical Fields
Whalen A, Xiao Y, Kadji H, Dahlem M, Gluckman B, Schiff S. Control of Spreading Depression with Electrical Fields. Scientific Reports 2018, 8: 8769. PMID: 29884896, PMCID: PMC5993812, DOI: 10.1038/s41598-018-26986-1.Peer-Reviewed Original ResearchConceptsElectric fieldField polarityDC electric fieldElectric field polarityElectrical controlOptical imagingPropagation pathIntrinsic optical imagingOpposite signDepression propagatesElectrical fieldField terminationElectro-chemical gradientPropagation velocityPropagatesFieldTraumatic brain injuryPropagationConfinementMore superficial layersDepression propagationBrain injurySynaptic transmissionBrain slicesWavesThermal effects on neurons during stimulation of the brain
Kim T, Kadji H, Whalen A, Ashourvan A, Freeman E, Fried S, Tadigadapa S, Schiff S. Thermal effects on neurons during stimulation of the brain. Journal Of Neural Engineering 2022, 19: 056029. PMID: 36126646, PMCID: PMC9855718, DOI: 10.1088/1741-2552/ac9339.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiophysicsBrainElectric ConductivityElectric StimulationElectrodesMammalsNeuronsConceptsThermal effectsJoule heatingMagnetic coilsRate dependencyElectrical interactionsSmall thermal effectsTemperature changesDissipation of energyNumerical modelingRange of frequenciesThermal energyMagnetic fieldDC drivingMagnetic inductionElectrical currentStatic magnetic fieldSmall temperature increaseTemperature increaseAccurate modulationCoilEnergy depositionHeatingConductorsTransient effectsElectrodeMEMS micro-coils for magnetic neurostimulation
Liu X, Whalen A, Ryu S, Lee S, Fried S, Kim K, Cai C, Lauritzen M, Bertram N, Chang B, Yu T, Han A. MEMS micro-coils for magnetic neurostimulation. Biosensors And Bioelectronics 2023, 227: 115143. PMID: 36805270, DOI: 10.1016/j.bios.2023.115143.Peer-Reviewed Original ResearchConceptsMEMS fabrication processHigh power efficiencyPhysical vapor depositionDRIE processThick metal filmSOI waferALD aluminaFabrication processParylene CCoil resistanceDevice fabricationProcess technologyLithography stepAl wireProbe fabricationMask fabricationPower efficiencyVapor depositionMetal filmsHigh conductivityLeak resistanceFabricationDesign changesCoil deviceMaskless photolithography
2020
Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants
Paulson J, Williams B, Hehnly C, Mishra N, Sinnar S, Zhang L, Ssentongo P, Mbabazi-Kabachelor E, Wijetunge D, von Bredow B, Mulondo R, Kiwanuka J, Bajunirwe F, Bazira J, Bebell L, Burgoine K, Couto-Rodriguez M, Ericson J, Erickson T, Ferrari M, Gladstone M, Guo C, Haran M, Hornig M, Isaacs A, Kaaya B, Kangere S, Kulkarni A, Kumbakumba E, Li X, Limbrick D, Magombe J, Morton S, Mugamba J, Ng J, Olupot-Olupot P, Onen J, Peterson M, Roy F, Sheldon K, Townsend R, Weeks A, Whalen A, Quackenbush J, Ssenyonga P, Galperin M, Almeida M, Atkins H, Warf B, Lipkin W, Broach J, Schiff S. Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants. Science Translational Medicine 2020, 12 PMID: 32998967, PMCID: PMC7774825, DOI: 10.1126/scitranslmed.aba0565.Peer-Reviewed Original ResearchConceptsPostinfectious hydrocephalusCSF samplesPIH casesPotential causative organismsCerebrospinal fluid accumulationCytomegalovirus coinfectionUgandan infantsNeonatal sepsisSurgical palliationNeonatal infectionInfant casesOptimal treatmentInfant cohortCommon causeCausative organismPediatric hydrocephalusFluid accumulationHydrocephalusAnaerobic bacterial isolatesControl casesInfectionFacultative anaerobic bacterial isolatesInfantsParasitic DNADisease