Christine Dien
she/her/hers
PhD Student, Computational Biology and  Biomedical InformaticsAbout
Research
Publications
2025
- Identifying Deprescribing Opportunities With Large Language Models in Older Adults: Retrospective Cohort StudySocrates V, Wright D, Huang T, Fereydooni S, Dien C, Chi L, Albano J, Patterson B, Kanaparthy N, Wright C, Loza A, Chartash D, Iscoe M, Taylor R. Identifying Deprescribing Opportunities With Large Language Models in Older Adults: Retrospective Cohort Study. JMIR Aging 2025, 8: e69504. PMID: 40215480, PMCID: PMC12032504, DOI: 10.2196/69504.Peer-Reviewed Original Research
- KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infectionFagerberg E, Attanasio J, Dien C, Singh J, Kessler E, Abdullah L, Shen J, Hunt B, Connolly K, De Brouwer E, He J, Iyer N, Buck J, Borr E, Damo M, Foster G, Giles J, Huang Y, Tsang J, Krishnaswamy S, Cui W, Joshi N. KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infection. Science 2025, 387: eadn2337. PMID: 39946463, PMCID: PMC12199163, DOI: 10.1126/science.adn2337.Peer-Reviewed Original ResearchConceptsCD8 T cellsT cellsCD8 T cell exhaustionNaive CD8 T cellsAcute LCMV infectionT cell exhaustionT cell fate decisionsLineage fidelityLCMV infectionEffector differentiationAcute infectionExhaustion programTranscription factorsImmune responseEpigenetic modulationSuppress differentiationProgenitor stateKLF2InfectionFunctional stateFate decisionsCD8
2024
- Quantifying cell-state densities in single-cell phenotypic landscapes using MellonOtto D, Jordan C, Dury B, Dien C, Setty M. Quantifying cell-state densities in single-cell phenotypic landscapes using Mellon. Nature Methods 2024, 21: 1185-1195. PMID: 38890426, PMCID: PMC12265947, DOI: 10.1038/s41592-024-02302-w.Peer-Reviewed Original Research
2023
- SEACells infers transcriptional and epigenomic cellular states from single-cell genomics dataPersad S, Choo Z, Dien C, Sohail N, Masilionis I, Chaligné R, Nawy T, Brown C, Sharma R, Pe’er I, Setty M, Pe’er D. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nature Biotechnology 2023, 41: 1746-1757. PMID: 36973557, PMCID: PMC10713451, DOI: 10.1038/s41587-023-01716-9.Peer-Reviewed Original ResearchConceptsCell statesTransposase-accessible chromatinSingle-cell sequencing dataSingle-cell dataDiscrete cell typesChromatin landscapeSequence dataGenomic dataExpression dynamicsAssociated with disease onsetCritical regulatorsGene scoreT cell differentiationCD4 T cell differentiationCell typesHematopoietic differentiationMetaCellChromatinCell clustersActive stateDifferentiationATACGenomeCellsRNA
Academic Achievements & Community Involvement
Get In Touch
Contacts
Locations
- CSEI- Lab - 100 College Street, Fl 11 - New Haven, CT 06510