2018
Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA
Montemayor E, Didychuk A, Yake A, Sidhu G, Brow D, Butcher S. Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA. Nature Communications 2018, 9: 1749. PMID: 29717126, PMCID: PMC5931518, DOI: 10.1038/s41467-018-04145-4.Peer-Reviewed Original ResearchConceptsU6 small nuclear RNASmall nuclear RNAPre-mRNAU6 snRNPPre-mRNA substratePrecursor messenger RNAProtein-protein contactsC-terminal regionSaccharomyces cerevisiaeHeteroheptameric ringMature mRNAActive siteU6 snRNPsMRNA decayNuclear RNAPost-transcriptionallySpliceosomeLsm2Prp24SnRNPMessenger RNARNAMRNAIntronLSm8The life of U6 small nuclear RNA, from cradle to grave
Didychuk A, Butcher S, Brow D. The life of U6 small nuclear RNA, from cradle to grave. RNA 2018, 24: 437-460. PMID: 29367453, PMCID: PMC5855946, DOI: 10.1261/rna.065136.117.Peer-Reviewed Original ResearchConceptsU6 small nuclear RNASmall nuclear RNAPre-mRNANuclear RNAProcess of RNA splicingCatalyzes intron removalEukaryotic gene expressionPre-mRNA substrateUridine-rich small nuclear RNAsRemoval of intronsPrecursor messenger RNACryo-EM structureSplicing cycleNoncoding transcriptsCatalytic coreProtein partnersRNA splicingIntron removalSplice siteGenetic dataMacromolecular machinesSpliceosomeGene expressionSplicingConformational changes
1997
A new strategy for introducing photoactivatable 4-thiouridine ((4S)U) into specific positions in a long RNA molecule.
Yu YT, Steitz JA. A new strategy for introducing photoactivatable 4-thiouridine ((4S)U) into specific positions in a long RNA molecule. RNA 1997, 3: 807-10. PMID: 9214662, PMCID: PMC1369526.Peer-Reviewed Original ResearchConceptsPre-mRNAPre-mRNA substrateAT-AC intronsPhage RNA polymeraseRNA-DNA chimerasFull-length RNALong RNA moleculesRNA polymeraseRNA moleculesT4 RNA ligaseT4 DNA ligaseRNA ligaseDNA ligaseRNARNase H cleavageLigaseSpecific sitesSpecific positionsIntronsPolymeraseChimerasNew strategyCleavageOligonucleotideH cleavage
1996
A Novel Spliceosome Containing U11, U12, and U5 snRNPs Excises a Minor Class (AT–AC) Intron In Vitro
Tarn W, Steitz J. A Novel Spliceosome Containing U11, U12, and U5 snRNPs Excises a Minor Class (AT–AC) Intron In Vitro. Cell 1996, 84: 801-811. PMID: 8625417, DOI: 10.1016/s0092-8674(00)81057-0.Peer-Reviewed Original ResearchMeSH KeywordsBase CompositionBase SequenceBlotting, NorthernCell NucleusHeLa CellsHumansMolecular Sequence DataNucleic Acid ConformationOligodeoxyribonucleotidesPlasmidsPolymerase Chain ReactionRibonuclease HRibonucleoprotein, U5 Small NuclearRibonucleoproteins, Small NuclearRNA PrecursorsRNA SplicingConceptsU5 small nuclear ribonucleoproteinSmall nuclear ribonucleoproteinU12 small nuclear ribonucleoproteinsMinor class intronsProtein coding genesPre-mRNA substrateNative gel electrophoresisCoding genesBranch site sequenceSplicing complexesNuclear ribonucleoproteinPre-mRNAP120 geneLariat intermediateSite sequenceIntronsHeLa cellsEssential roleSplicingGel electrophoresisBranch siteGenesU12Minor classU11
1994
SR proteins can compensate for the loss of U1 snRNP functions in vitro.
Tarn WY, Steitz JA. SR proteins can compensate for the loss of U1 snRNP functions in vitro. Genes & Development 1994, 8: 2704-2717. PMID: 7958927, DOI: 10.1101/gad.8.22.2704.Peer-Reviewed Original ResearchConceptsSR proteinsSplice site recognitionSplice siteU1 snRNPsU1 snRNP functionsEssential splicing factorPre-mRNA substrateSplice site choiceNative gel analysisSplice site selectionMethyl oligoribonucleotideCross-linking studiesSnRNP functionSplicing factorsU1 snRNPU1 snRNASite recognitionSite choiceGel analysisRescue splicingProteinSplicing systemIntronsSnRNPs
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply