2020
Quantification of nematic cell polarity in three-dimensional tissues
Scholich A, Syga S, Morales-Navarrete H, Segovia-Miranda F, Nonaka H, Meyer K, de Back W, Brusch L, Kalaidzidis Y, Zerial M, Jülicher F, Friedrich B. Quantification of nematic cell polarity in three-dimensional tissues. PLOS Computational Biology 2020, 16: e1008412. PMID: 33301446, PMCID: PMC7755288, DOI: 10.1371/journal.pcbi.1008412.Peer-Reviewed Original Research
2019
Analyzing collective motion with machine learning and topology
Bhaskar D, Manhart A, Milzman J, Nardini JT, Storey KM, Topaz CM, Ziegelmeier L. Analyzing collective motion with machine learning and topology. Chaos An Interdisciplinary Journal Of Nonlinear Science 2019, 29: 123125. PMID: 31893635, PMCID: PMC7027427, DOI: 10.1063/1.5125493.Peer-Reviewed Original ResearchSupervised machine learning methodsMachine learning methodsTopological data analysisCollective motionMachine learningLearning methodsOrder parameterSimulation dataTopological approachPersistent homologyTraditional order parametersPrior knowledgeMachineCollective behaviorModel parametersData analysisLarge librariesNumerical simulationsTopologyMultiple scalesMotionTime seriesLearningDifferent typesParameters
2013
Distribution of directional change as a signature of complex dynamics
Burov S, Tabei S, Huynh T, Murrell M, Philipson L, Rice S, Gardel M, Scherer N, Dinner A. Distribution of directional change as a signature of complex dynamics. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 19689-19694. PMID: 24248363, PMCID: PMC3856831, DOI: 10.1073/pnas.1319473110.Peer-Reviewed Original ResearchConceptsMean square displacementRandom walkParticle tracking dataSelf-similar propertiesStochastic processOrder parameterComplex dynamicsStatistical featuresMore dimensionsSquare displacementSuccessive time intervalsWalkRelative angleCommon modelDynamicsColloidal systemsPossible scenariosTracking dataDistributionModelMotionTime intervalParameters
2007
Dynamical Evolution of Spatiotemporal Patterns in Mammalian Middle Cortex
Schiff S, Huang X, Wu J. Dynamical Evolution of Spatiotemporal Patterns in Mammalian Middle Cortex. Physical Review Letters 2007, 98: 178102. PMID: 17501537, PMCID: PMC2039901, DOI: 10.1103/physrevlett.98.178102.Peer-Reviewed Original Research
1995
Quantum evolution of disoriented chiral condensates
Cooper F, Kluger Y, Mottola E, Paz J. Quantum evolution of disoriented chiral condensates. Physical Review D 1995, 51: 2377-2397. PMID: 10018710, DOI: 10.1103/physrevd.51.2377.Peer-Reviewed Original ResearchHigh-energy heavy-ion collisionsEnergy heavy ion collisionsHeavy-ion collisionsFm/cChiral condensateProper time τProper time evolutionDisoriented chiral condensateBroken symmetry phaseIon collisionsTwo-point correlation functionEffective pion massQuantum evolutionNonequilibrium evolutionPhase spacePion massSymmetry phasePoint correlation functionTime evolutionCondensate regionOrder parameterCorrelation functionsTime τΣ-modelEquilibrium configurations
1994
Nonequilibrium quantum fields in the large-N expansion
Cooper F, Habib S, Kluger Y, Mottola E, Paz J, Anderson P. Nonequilibrium quantum fields in the large-N expansion. Physical Review D 1994, 50: 2848-2869. PMID: 10017918, DOI: 10.1103/physrevd.50.2848.Peer-Reviewed Original ResearchQuantum electrodynamicsEquations of motionLarge-n expansion methodNonequilibrium quantum fieldsScalar λφ4 theoryStrong electric fieldSimple renormalization schemeQuantum effective actionReal-time dynamicsScalar order parameterEffective action techniquesQuantum fluctuationsPair creationQuantum fieldsSchwinger-KeldyshField theoryΛφ4 theoryElectric fieldNumerical solutionMean fieldFermion fieldsOrder parameterTime evolutionRenormalization schemeNonequilibrium effects
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply