1998
Nervous System Defects of AnkyrinB (−/−) Mice Suggest Functional Overlap between the Cell Adhesion Molecule L1 and 440-kD AnkyrinB in Premyelinated Axons
Scotland P, Zhou D, Benveniste H, Bennett V. Nervous System Defects of AnkyrinB (−/−) Mice Suggest Functional Overlap between the Cell Adhesion Molecule L1 and 440-kD AnkyrinB in Premyelinated Axons. Journal Of Cell Biology 1998, 143: 1305-1315. PMID: 9832558, PMCID: PMC2133070, DOI: 10.1083/jcb.143.5.1305.Peer-Reviewed Original ResearchConceptsNervous systemOptic nervePyramidal tractCorpus callosumOptic nerve axonsPostnatal day 21Long fiber tractsPostnatal day 1Postnatal day 7Mouse nervous systemNervous system defectsL1 miceCell adhesion molecule L1Internal capsuleSpinal cordAdhesion molecule L1Extensive degenerationCell adhesion moleculeLateral columnDay 1Day 21Day 7Human patientsL1 mutationsDay 20Vigabatrin enhances promoted release of GABA in neonatal rat optic nerve
Yee J, Agulian S, Kocsis J. Vigabatrin enhances promoted release of GABA in neonatal rat optic nerve. Epilepsy Research 1998, 29: 195-200. PMID: 9551781, DOI: 10.1016/s0920-1211(97)00086-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAnticonvulsantsAstrocytesAxonsBicucullineCarrier ProteinsGABA Plasma Membrane Transport Proteinsgamma-Aminobutyric AcidIn Vitro TechniquesMembrane PotentialsMembrane ProteinsMembrane Transport ProteinsModels, NeurologicalNipecotic AcidsOptic NerveOrganic Anion TransportersPotassium ChlorideProlineRatsRats, WistarReceptors, GABA-ATime FactorsVigabatrinConceptsRelease of GABAGABA levelsNipecotic acidNeonatal rat optic nerveGABA transporter inhibitorOptic nerve axonsRat optic nerveOptic nerve astrocytesEnzyme GABA transaminaseGABA transaminase activityFree GABA levelsOptic nerveAntiepileptic drugsNO-711GABA transporterNerve axonsTransaminase activityGABA transaminaseVigabatrinTransporter inhibitorsGABADepolarizationGreater releaseElevationRelease
1995
Modulation of axonal excitability by neurotransmitter receptors
KOCSIS J, SAKATANI K. Modulation of axonal excitability by neurotransmitter receptors. 1995, 281-295. DOI: 10.1093/acprof:oso/9780195082937.003.0014.Peer-Reviewed Original ResearchNeurotransmitter receptorsGABAA receptorsAxonal GABAA receptorsFunctional GABAA receptorsOptic nerve developmentOptic nerve axonsGABAA receptor activationPossible modulatory roleMammalian nervous systemAxonal excitabilityTrophic influenceNervous systemNerve developmentModulatory roleElectrophysiological propertiesReceptor activationImpulse conductionNerve axonsCertain axonsAxonal regionsReceptorsPossible functional significanceAxonsTransient presenceFunctional significance
1994
Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditions
1993
Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium
Waxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.Peer-Reviewed Original ResearchConceptsArtificial cerebrospinal fluidMin of anoxiaOptic nerveZero-Ca2White matterAnoxic injuryCNS white matter tractAxonal cytoskeletonOptic nerve axonsCNS white matterRat optic nerveInflux of Ca2White matter tractsLoss of cristaeDisorganization of cristaeMembranous profilesUltrastructure of axonsAbnormal influxCerebrospinal fluidExtracellular calciumNerveMyelinated axonsNerve axonsNormal Ca2AxonsThe attenuation of GABA sensitivity in the maturing myelin-deficient rat optic nerve
Lim J, Utzschneider D, Sakatani K, Kocsis J. The attenuation of GABA sensitivity in the maturing myelin-deficient rat optic nerve. Brain Research 1993, 72: 15-20. PMID: 8384095, DOI: 10.1016/0165-3806(93)90155-4.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveEffect of GABAMD ratsNipecotic acidGABA sensitivityGABA uptake inhibitor nipecotic acidNormal optic nervesGABAA receptor agonistOptic nerve axonsEarly postnatal periodCentral nervous system axonsThird postnatal weekSucrose gap techniqueResult of myelinationLarger GABAAxonal excitabilityControl ratsGABAA receptorsEndogenous releasePostnatal periodPostnatal weekNerve sensitivityNerveGABA
1985
Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development
Ransom B, Yamate C, Black J, Waxman S. Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development. Brain Research 1985, 337: 41-49. PMID: 2408709, DOI: 10.1016/0006-8993(85)91607-5.Peer-Reviewed Original ResearchConceptsOptic nerveGlial cellsOptic nerve axonsRat optic nerveCompound action potentialEarly postnatal developmentDays of ageOlder nervesNeonatal treatmentBrain extracellular spaceNeuroglial interactionsElectrophysiological studiesNervePostnatal developmentAction potentialsNerve axonsExcitability propertiesMarked reductionMyelin formationGliogenesisMitotic inhibitorsIonic homeostasisExtracellular spaceAgeAnimals
1984
Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations
Hildebrand C, Waxman S. Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations. The Journal Of Comparative Neurology 1984, 224: 25-37. PMID: 6715578, DOI: 10.1002/cne.902240103.Peer-Reviewed Original ResearchConceptsRat optic nerve fibersOptic nerve fibersNerve fibersUnmyelinated optic nerve axonsPostnatal differentiationOptic nerve axonsPerinodal astrocytic processesAxoglial signallingNodes of RanvierVesiculotubular profilesOptic nerveRat pupsCompact myelin sheathAxolemmal undercoatingAstrocytic processesNerve axonsAxonal diameterMyelin sheathAxon segmentsAxonsAxolemmaRanvierDaysElectron microscopic observationsFunctional differentiation
1982
Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaks
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply