2016
Estimating the Size of a Large Network and its Communities from a Random Sample.
Chen L, Karbasi A, Crawford FW. Estimating the Size of a Large Network and its Communities from a Random Sample. Advances In Neural Information Processing Systems 2016, 29: 3072-3080. PMID: 28867924, PMCID: PMC5578631.Peer-Reviewed Original ResearchStochastic block modelMost real-world networksImportant global propertiesLarge networksNumber of verticesReal-world networksRandom graphsBlock membershipGlobal propertiesSize estimation algorithmPartial informationEstimation algorithmModel parametersBlock modelInduced subgraphTheoretical analysisGlobal network propertiesVerticesNetwork propertiesComputer scienceTotal degreeEstimatorNetworkGraphSample size
2014
Twice-Ramanujan Sparsifiers
Batson J, Spielman D, Srivastava N. Twice-Ramanujan Sparsifiers. SIAM Review 2014, 56: 315-334. DOI: 10.1137/130949117.Peer-Reviewed Original ResearchSpectral sparsifierLaplacian matrixPositive semidefinite matricesNonnegative diagonal matrixNumber of edgesNumber of verticesDeterministic polynomial time algorithmGeneral theoremSemidefinite matricesNonzero entriesPolynomial time algorithmSparse graphsDiagonal matrixQuadratic formSparse approximationSparsifiersWeighted graphReal matricesSpecial caseTime algorithmGraphVerticesMatrixTheoremApproximation
2012
Twice-Ramanujan Sparsifiers
Batson J, Spielman D, Srivastava N. Twice-Ramanujan Sparsifiers. SIAM Journal On Computing 2012, 41: 1704-1721. DOI: 10.1137/090772873.Peer-Reviewed Original Research
2009
Twice-ramanujan sparsifiers
Batson J, Spielman D, Srivastava N. Twice-ramanujan sparsifiers. 2009, 255-262. DOI: 10.1145/1536414.1536451.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply