2021
Nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung‐like changes
Shin HJ, Kim S, Park H, Shin M, Kang I, Kang M. Nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung‐like changes. Aging Cell 2021, 20: e13410. PMID: 34087956, PMCID: PMC8282248, DOI: 10.1111/acel.13410.Peer-Reviewed Original ResearchConceptsCellular senescenceActivation of mTORNucleotide-binding domainCellular senescence responseReplicative cellular senescenceNLR family membersOrganismal agingCellular physiologyMitochondrial moleculesSenescence responseCellular locationProtein X1Crucial regulatorMechanistic targetMitochondrial functionMolecular hallmarksNLRX1 functionRapamycin (mTOR) activationMitochondrial dysfunctionSenescenceMTORPharmacological inhibitionNLRX1BiologyAging Lung
2012
A C‐terminal tyrosine‐based motif in the bile salt export pump directs clathrin‐dependent endocytosis
Lam P, Xu S, Soroka CJ, Boyer JL. A C‐terminal tyrosine‐based motif in the bile salt export pump directs clathrin‐dependent endocytosis. Hepatology 2012, 55: 1901-1911. PMID: 22161577, PMCID: PMC3319652, DOI: 10.1002/hep.25523.Peer-Reviewed Original ResearchConceptsTyrosine-based motifNucleotide-binding domainEndocytic motifTransmembrane segmentsCanonical tyrosine-based motifTyrosine-based endocytic motifCytoplasmic nucleotide-binding domainsClathrin-dependent pathwayClathrin-dependent endocytosisRegulation of traffickingBroad substrate specificitySite-directed mutagenesisATP-dependent transportHEK293T cellsCytoplasmic terminiEndocytosis motifCassette proteinSubsequent sequence analysisTerminal tailSubstrate specificityConstitutive internalizationReporter systemSequence analysisBile salt export pumpTerminal end
1999
Control of CFTR Channel Gating by Phosphorylation and Nucleotide Hydrolysis
GADSBY D, NAIRN A. Control of CFTR Channel Gating by Phosphorylation and Nucleotide Hydrolysis. Physiological Reviews 1999, 79: s77-s107. PMID: 9922377, DOI: 10.1152/physrev.1999.79.1.s77.Peer-Reviewed Original ResearchConceptsNucleotide-binding domainCFTR channelsCytoplasmic nucleotide-binding domainsNucleotide hydrolysisChannel gatingDependent phosphorylation eventsCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelCFTR channel currentsCFTR channel gatingATP moleculesLarge cytoplasmic domainCommon lethal genetic diseaseSecond ATP moleculeSingle CFTR channelsATP hydrolysis cycleLethal genetic diseasePhosphorylation eventsGating cycleRegulatory domainCytoplasmic domainDifferent phosphoformsProgressive phosphorylationMultiple proteinsProtein productsHydrolysis cycle
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply