2022
N 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs
Kanoria S, Rennie WA, Carmack CS, Lu J, Ding Y. N 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. Bioinformatics Advances 2022, 2: vbab046. PMID: 35098135, PMCID: PMC8792947, DOI: 10.1093/bioadv/vbab046.Peer-Reviewed Original ResearchPost-transcriptional gene regulationMiRNA-binding sitesGene regulationMiRNA-mediated gene regulationEukaryotic messenger RNAsMiRNA-mediated regulationMiRNA-target bindingRNA-binding proteinMiRNA target sitesPost-transcriptional regulatorsPotential methylation sitesHigh GC contentHigh-throughput dataArgonaute proteinsEvolutionary conservationPrevalent modificationTarget mRNAsGC contentMethylation sitesTarget secondary structureGene expressionRNA structureSecondary structureMessenger RNAFunctional significance
2007
Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR
Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 9667-9672. PMID: 17535905, PMCID: PMC1887587, DOI: 10.1073/pnas.0703820104.Peer-Reviewed Original ResearchConceptsInternal ribosome entry siteTarget mRNAsMiRNA-mediated repressionRepression of translationLuciferase reporter mRNAMiRNA target sitesInitiation of translationMiRNA-binding sitesHuman HeLa cellsRibosome entry siteMicroRNA-binding sitesLet-7 complementary sitesHuman Ago2Reporter mRNAMicroRNAs (miRNAs) bindEndogenous mRNATranslational efficiencyLet-7a miRNAUTRProtein synthesisDNA transfectionComplementary sitesHeLa cellsEntry siteTarget site
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply