2024
EPCO-34. DECIPHERING THE LONGITUDINAL TRAJECTORIES OF GLIOBLASTOMA BY INTEGRATIVE SINGLE-CELL GENOMICS
Spitzer A, Johnson K, Nomura M, Garofano L, Nehar-belaid D, Darnell N, Greenwald A, Bussema L, Oh Y, Varn F, D’Angelo F, Gritsch S, Anderson K, Migliozzi S, Castro L, Chowdhury T, Robine N, Reeves C, Park J, Lipsa A, Hertel F, Golebiewska A, Niclou S, Nusrat L, Kellet S, Das S, Moon H, Paek S, Bielle F, Laurenge A, Di Stefano A, Mathon B, Picca A, Sanson M, Tanaka S, Saito N, Ashley D, Keir S, Huse J, Yung W, Lasorella A, Iavarone A, Verhaak R, Tirosh I, Suvà M. EPCO-34. DECIPHERING THE LONGITUDINAL TRAJECTORIES OF GLIOBLASTOMA BY INTEGRATIVE SINGLE-CELL GENOMICS. Neuro-Oncology 2024, 26: viii9-viii9. PMCID: PMC11553653, DOI: 10.1093/neuonc/noae165.0033.Peer-Reviewed Original ResearchMalignant cellsStandard-of-care therapyCell typesMalignant cell fractionIDH-wildtype glioblastomaTumor DNA sequencingRecurrent GBM specimensMesenchymal-like cellsAssociated with specific changesMGMT methylationCell statesTreatment responseSingle-cell genomicsComposition of cell typesSingle-nucleus RNA sequencingMalignant stateDistribution of cell typesRecurrent samplesGBM specimensLongitudinal cohortGlioblastomaDNA sequencesClinical annotationDeletion phenotypeCell fraction
2017
Whole-Exome Sequencing of Congenital Glaucoma Patients Reveals Hypermorphic Variants in GPATCH3, a New Gene Involved in Ocular and Craniofacial Development
Ferre-Fernández JJ, Aroca-Aguilar JD, Medina-Trillo C, Bonet-Fernández JM, Méndez-Hernández CD, Morales-Fernández L, Corton M, Cabañero-Valera MJ, Gut M, Tonda R, Ayuso C, Coca-Prados M, García-Feijoo J, Escribano J. Whole-Exome Sequencing of Congenital Glaucoma Patients Reveals Hypermorphic Variants in GPATCH3, a New Gene Involved in Ocular and Craniofacial Development. Scientific Reports 2017, 7: 46175. PMID: 28397860, PMCID: PMC5387416, DOI: 10.1038/srep46175.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsChromosome SegregationEmbryo, NonmammalianExome SequencingEyeFaceFamilyFemaleGene Expression Regulation, DevelopmentalGene Knockdown TechniquesGlaucomaHumansMaleMiddle AgedMutationOrgan SpecificityPedigreePhenotypePromoter Regions, GeneticReceptors, CXCR4SkullSubcellular FractionsTranscriptional ActivationZebrafishConceptsNew genesZebrafish embryosCraniofacial developmentEarly zebrafish embryosNeural crest cell migrationCrest cell migrationNew disease genesMesenchymal-like cellsHigh genetic heterogeneityUnidentified functionTransient overexpressionProximal promoterDisease genesGene Pitx2Whole-exome sequencingGenesCell migrationGenetic heterogeneityExome sequencingSkeletal muscleRare variantsCraniofacial abnormalitiesEmbryosSequencingProtein
2008
A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells
Rieske P, Augelli B, Stawski R, Gaughan J, Azizi S, Krynska B. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells. Experimental Cell Research 2008, 315: 462-473. PMID: 19061885, DOI: 10.1016/j.yexcr.2008.11.004.Peer-Reviewed Original ResearchConceptsNormal human astrocytesMesenchymal-like cellsNeural crest cellsCollagen 1Mesenchymal-like derivativesFetal human brain cellsFetal brain cellsCrest cellsMesenchymal markers fibronectinNeural stem/progenitor cellsAstrocytes in vitroBrain cellsExpression of vimentinInduced in vitroSerum-containing mediumMarkers of neural crest cellsExtracellular matrixSOX-10Stem/progenitor cellsNeuronal markersHuman brain cellsBetaIII-tubulinMarkers fibronectinBrain parenchymaMesenchymal lineages
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply