Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods
Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 7432-7437. PMID: 15899969, PMCID: PMC1140426, DOI: 10.1073/pnas.0500896102.Peer-Reviewed Original ResearchMarkov matrixMacroscopic descriptionGeometric diffusionMultiscale methodDiffusion semigroupsScaling functionsMultiscale natureNewtonian paradigmHarmonic analysisN algorithmMultiscale analysisComplex structureHeterogeneous structureGeometric organizationSemigroupsData representationMatrixSystem leadCompanion articleDifferent scalesGeneralizationGraphDescriptionAlgorithmProblemGeometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 7426-7431. PMID: 15899970, PMCID: PMC1140422, DOI: 10.1073/pnas.0500334102.Peer-Reviewed Original ResearchMarkov matrixMacroscopic descriptionGeometric diffusionMultiscale geometryDiffusion semigroupsNewtonian paradigmHarmonic analysisDiffusion mapsUnified viewNumerical analysisComplex structureLocal transitionsGeometric organizationEigenfunctionsSemigroupsMachine learningMatrixSystem leadGeneralizationDifferent scalesGraphDescriptionData analysisGeometryTransition
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply