2014
Design of multidimensional Shinnar–Le Roux radiofrequency pulses
Ma C, Liang Z. Design of multidimensional Shinnar–Le Roux radiofrequency pulses. Magnetic Resonance In Medicine 2014, 73: 633-645. PMID: 24578212, PMCID: PMC4147023, DOI: 10.1002/mrm.25179.Peer-Reviewed Original Research
2011
Chapter 44 Using GPUs to Accelerate Advanced MRI Reconstruction with Field Inhomogeneity Compensation
Zhuo Y, Wu X, Haldar J, Marin T, Hwu W, Liang Z, Sutton B. Chapter 44 Using GPUs to Accelerate Advanced MRI Reconstruction with Field Inhomogeneity Compensation. 2011, 709-722. DOI: 10.1016/b978-0-12-384988-5.00044-9.Peer-Reviewed Original ResearchInhomogeneity compensationNonideal physical effectsReconstruction algorithmMRI reconstruction algorithmsLoop invariant code motionFloating-point computationsMagnetic resonance imagingSingle-precision floating-point computationData acquisition timeAccurate image reconstructionSignal-to-noise ratioGPU implementationGPU kernelsMRI reconstructionSeverity of artifactsImproved trade-offFlexible diagnostic toolConstant memoryGPUCode motionImage contrastPhysical effectsImage reconstructionClinical scansAcquisition time
2010
ACCELERATING ITERATIVE FIELD-COMPENSATED MR IMAGE RECONSTRUCTION ON GPUS
Zhuo Y, Wu X, Haldar J, Hwu W, Liang Z, Sutton B. ACCELERATING ITERATIVE FIELD-COMPENSATED MR IMAGE RECONSTRUCTION ON GPUS. 2010, 820-823. DOI: 10.1109/isbi.2010.5490112.Peer-Reviewed Original ResearchGraphics processing unitsMR image reconstructionComputation timeField inhomogeneityImage reconstruction algorithmUnified deviceConjugate gradient algorithmMagnetic field inhomogeneityProcessing unitComputer hardwareMagnetic field mapsImage reconstructionReconstruction algorithmGradient algorithmAlgorithmAir/tissue interfacesInhomogeneity compensationIterative reconstructionComputerCompensation techniqueImplementationSusceptibility differencesImaging systemGpusField mapping
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply