2012
Conformational Change in Rhomboid Protease GlpG Induced by Inhibitor Binding to Its S′ Subsites
Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, Ha Y. Conformational Change in Rhomboid Protease GlpG Induced by Inhibitor Binding to Its S′ Subsites. Biochemistry 2012, 51: 3723-3731. PMID: 22515733, PMCID: PMC3351039, DOI: 10.1021/bi300368b.Peer-Reviewed Original ResearchConceptsRhomboid protease GlpGInhibitor bindingCatalytic serineRhomboid proteasesMembrane proteaseHelix tiltEnzyme mechanismConformational changesAqueous solutionSmall inhibitorsConformational flexibilityCrystallographic investigationCrystal structureS subsitesGlpGLipid bilayersSide chainsHydrophobic environmentPolypeptide backboneProteaseSerineExtensive changesBindingInhibitorsSubstrate
2006
Crystal structure of a rhomboid family intramembrane protease
Wang Y, Zhang Y, Ha Y. Crystal structure of a rhomboid family intramembrane protease. Nature 2006, 444: 179-180. PMID: 17051161, DOI: 10.1038/nature05255.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsBinding SitesCatalysisCell MembraneCrystallizationCrystallography, X-RayDNA-Binding ProteinsEndopeptidasesEscherichia coliEscherichia coli ProteinsHydrophobic and Hydrophilic InteractionsMembrane ProteinsModels, MolecularProtein Structure, TertiarySubstrate SpecificityWaterConceptsMembrane proteinsEscherichia coli GlpGÅ resolution crystal structureSite-2 proteaseIntegral membrane proteinsPutative active siteResolution crystal structureHydrophilic active siteRhomboid proteasesIntramembrane proteasesIntramembrane proteolysisTransmembrane segmentsTransmembrane domainActive siteProtease familyMembrane bilayerProtein interiorCore domainGating mechanismGlpGΓ-secretaseHydrophobic environmentCrystal structureProteaseLoop structure
2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesis
1997
Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant
Nassar A, Rusling J, Kumosinski T. Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant. Biophysical Chemistry 1997, 67: 107-116. PMID: 9397521, DOI: 10.1016/s0301-4622(97)00027-6.Peer-Reviewed Original ResearchConceptsDidodecyldimethylammonium bromideFilms of didodecyldimethylammonium bromideDidodecyldimethylammonium bromide filmsElectrochemistry of myoglobinHeme protein myoglobinLinear dichroism studiesFT-IR spectraPH of external solutionBind anionsVoltammetric dataElectron transferFT-IRProtein myoglobinHydrophobic environmentPositive chargeMB surfaceDichroism studiesElectrochemistryUnfolded formFilmsDonnan potentialPH effectElectrodeSaltSalt concentration
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply