2024
Artificial Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency
Hew Y, Kutuk D, Duzcu T, Ergun Y, Basar M. Artificial Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency. Biology 2024, 13: 988. PMID: 39765654, PMCID: PMC11727220, DOI: 10.3390/biology13120988.Peer-Reviewed Original ResearchArtificial intelligenceIn vitro fertilizationPattern recognition capabilitiesHuman-machine interfaceData securityReducing human errorIn vitro fertilization laboratoryDeep learningNeural networkMachine learningAI technologyAlgorithmic biasRecognition capabilityReproductive medicineHuman errorSperm selectionEffects of AIStandard processIntelligenceIncreased accuracySensitivity fieldPersonalized treatment plansQuality assuranceOperational efficiencyLearning
2018
Integration of “omics” Data and Phenotypic Data Within a Unified Extensible Multimodal Framework
Das S, Boucher X, Rogers C, Makowski C, Chouinard-Decorte F, Klein K, Beck N, Rioux P, Brown ST, Mohaddes Z, Zweber C, Foing V, Forest M, O’Donnell K, Clark J, Meaney MJ, Greenwood CMT, Evans AC. Integration of “omics” Data and Phenotypic Data Within a Unified Extensible Multimodal Framework. Frontiers In Neuroinformatics 2018, 12: 91. PMID: 30631270, PMCID: PMC6315165, DOI: 10.3389/fninf.2018.00091.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsHigh-performance computingOpen-source data platformMulti-modal datasetsAnalysis pipelineDouglas Mental Health University InstituteVersioned dataProvenance informationHPC platformsData platformWeb interfaceBioinformatics barrierMultimodal dataVisualization toolsHeterogeneous datasetsSeamless linkingMultimodal frameworkManual interventionMultiple versionsTransparent sharingData reliabilityData handlingSeamless processHuman errorDatasetUniversity Institute
2016
Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images
Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, Sun W. Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images. International Journal For Numerical Methods In Biomedical Engineering 2016, 33 PMID: 27557429, PMCID: PMC5325825, DOI: 10.1002/cnm.2827.Peer-Reviewed Original ResearchConceptsHuman expertsGeometry reconstructionHuman errorMean discrepancyPreoperative planning systemComputational modeling processReconstructed geometryFinite element model generationModel generationPatient-specific computational modelingCardiac imagesComputational modeling methodsFast feedbackComputational modeling frameworkModeling processMesh correspondencePlanning systemModeling methodMachineModeling frameworkAortic valveImagesDisease diagnosisLarge patient cohortIndividual patient needs
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply