A Novel Machine Learning Model to Predict Revision ACL Reconstruction Failure in the MARS Cohort
Group M, Vasavada K, Vasavada V, Moran J, Devana S, Lee C, Hame S, Jazrawi L, Sherman O, Huston L, Haas A, Allen C, Cooper D, DeBerardino T, Spindler K, Stuart M, Amendola A, Annunziata C, Arciero R, Bach B, Baker C, Bartolozzi A, Baumgarten K, Berg J, Bernas G, Brockmeier S, Brophy R, Bush-Joseph C, Butler J, Carey J, Carpenter J, Cole B, Cooper J, Cox C, Creighton R, David T, Dunn W, Flanigan D, Frederick R, Ganley T, Gatt C, Gecha S, Giffin J, Hannafin J, Harris N, Hechtman K, Hershman E, Hoellrich R, Johnson D, Johnson T, Jones M, Kaeding C, Kamath G, Klootwyk T, Levy B, Benjamin C, Maiers G, Marx R, Matava M, Mathien G, McAllister D, McCarty E, McCormack R, Miller B, Nissen C, O’Neill D, Owens B, Parker R, Purnell M, Ramappa A, Rauh M, Rettig A, Sekiya J, Shea K, Slauterbeck J, Smith M, Spang J, Svoboda S, Taft T, Tenuta J, Tingstad E, Vidal A, Viskontas D, White R, Williams J, Wolcott M, Wolf B, Wright R, York J. A Novel Machine Learning Model to Predict Revision ACL Reconstruction Failure in the MARS Cohort. Orthopaedic Journal Of Sports Medicine 2024, 12: 23259671241291920. PMID: 39555321, PMCID: PMC11565622, DOI: 10.1177/23259671241291920.Peer-Reviewed Original ResearchRevision anterior cruciate ligament reconstructionMulticenter ACL Revision StudyGraft failureRisk of graft failureAnterior cruciate ligament reconstructionLogistic regressionFollow-up dataCruciate ligament reconstructionACL reconstruction failureLevel of evidencePatient-reported outcomesCohort dataIntraoperative findingsTibial tunnel sizesModerate predictive abilityReconstruction failureFollow-upGraft typeAllograft useCohort studyPreoperative radiographsLigament reconstructionRisk factorsCohortPatients
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply