2006
Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
Coifman R, Lafon S. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied And Computational Harmonic Analysis 2006, 21: 31-52. DOI: 10.1016/j.acha.2005.07.005.Peer-Reviewed Original ResearchEntire space RnProlate spheroidal wave functionsLaplace-Beltrami operatorSpheroidal wave functionsFunction fSubmanifold of RnNyström methodSpace RnFourier modesSample extensionGeometric harmonicsEmpirical functionWave functionsSimple schemeExtension schemeLarge domainsSpecific familySchemeRnIntrinsic frequency spectrumExtensionFrequency spectrumSubmanifoldsEigenfunctionsSlepian
1994
Dynamical chaos in SU(2)⊗U(1) theory
Berman G, Bulgakov E, Holm D, Kluger Y. Dynamical chaos in SU(2)⊗U(1) theory. Physics Letters A 1994, 194: 251-264. DOI: 10.1016/0375-9601(94)91247-5.Peer-Reviewed Original ResearchTime correlation functionsGeV/fm3Correlation functionsChaotic regimeFrequency spectrumEarly universeRegular regimeDynamical chaosEnergy densityFrequency linesBroken phaseObservable effectChaotic dynamicsSpectraYang-Mills fieldsRegimeGauge theoryTransitionUniverseDensityFm3DynamicsYang-MillsTheoryField
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply