2025
Robust Transfer Learning for High‐Dimensional GLM Using γ$$ \gamma $$‐Divergence With Applications to Cancer Genomics
Xu F, Ma S, Zhang Q, Xu Y. Robust Transfer Learning for High‐Dimensional GLM Using γ$$ \gamma $$‐Divergence With Applications to Cancer Genomics. Statistics In Medicine 2025, 44: e70170. PMID: 40662636, PMCID: PMC12313224, DOI: 10.1002/sim.70170.Peer-Reviewed Original ResearchConceptsTransfer learningReal world biomedical dataRisk of negative transferProximal gradient descentTransfer learning methodTransfer learning approachHigh-dimensional dataHigh-dimensional settingsGradient descentCompetitive performanceLearning methodsEstimation error boundsBiomedical dataEfficient algorithmLearning approachDetection schemeNegative transferAnalysis of complex diseasesDebiasing stepMethod's effectivenessCancer genomic dataData contaminationError boundsHigh-dimensional profiling dataOutliers
2022
Nonparametric Functional Graphical Modeling Through Functional Additive Regression Operator
Lee K, Li L, Li B, Zhao H. Nonparametric Functional Graphical Modeling Through Functional Additive Regression Operator. Journal Of The American Statistical Association 2022, 118: 1718-1732. DOI: 10.1080/01621459.2021.2006667.Peer-Reviewed Original ResearchRegression operatorMultivariate random functionsGraphical modelsOne-dimensional kernelCurse of dimensionalityRandom variablesStatistical objectsRandom functionExisting graphical modelsError boundsEstimation consistencyLarge-scale networksDistributional assumptionsGaussian distributionNonparametric approachNonlinear relationOperatorsGraphical modelingOperator levelNeighborhood selectionExponential rateSupplementary materialElectroencephalography datasetAssumptionDifferent nodes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply