2025
Corrigendum to “Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications” [Int. J. Biol. Macromol. volume 154 (2020), Pages 1285–1294]
Asadpour S, Kargozar S, Moradi L, Ai A, Nosrati H, Ai J. Corrigendum to “Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications” [Int. J. Biol. Macromol. volume 154 (2020), Pages 1285–1294]. International Journal Of Biological Macromolecules 2025, 306: 141459. PMID: 40037279, DOI: 10.1016/j.ijbiomac.2025.141459.Peer-Reviewed Original ResearchTissue engineering applicationsComposite scaffoldsEngineering applicationsSilk fibroinNatural biomacromolecules
2023
Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing
Moradi L, Witek L, Vivekanand Nayak V, Cabrera Pereira A, Kim E, Good J, Liu C. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 2023, 301: 122289. PMID: 37639975, PMCID: PMC11232488, DOI: 10.1016/j.biomaterials.2023.122289.Peer-Reviewed Original ResearchConceptsΒ-GP hydrogelPorous interconnected structureAmount of GOTissue engineering applicationsEngineering applicationsLong-term storage stabilityInjectable biomaterialsGrowth factor deliveryInjectable hydrogelsInterconnected structureHigh viscosityRapid sol-gel transitionHydrogelsSustained-release propertiesFactor deliveryBiomechanical environmentStorage stabilitySustained deliverySol-gel transitionExcellent candidateCartilage regenerationGel networkSustained releaseChitosanFracture healing
2022
3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications
Dell A, Wagner G, Own J, Geibel J. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022, 14: 2596. PMID: 36559090, PMCID: PMC9784738, DOI: 10.3390/pharmaceutics14122596.Peer-Reviewed Original ResearchTissue engineering applicationsPrintable formulationsBioprinting processEngineering applicationsProcess optimizationBioprinting methodInk formulationTissue engineeringTailorable materialsBioprintingBiomedical applicationsBiological tissuesHydrogelsNew hydrogelsInkPromising optionNovel methodApplicationsBiological applicationsFormulationVariety of techniquesEngineeringMethodMaterials
2019
Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications
Asadpour S, Kargozar S, Moradi L, Ai A, Nosrati H, Ai J. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications. International Journal Of Biological Macromolecules 2019, 154: 1285-1294. PMID: 31733251, DOI: 10.1016/j.ijbiomac.2019.11.003.Peer-Reviewed Original ResearchConceptsComposite scaffoldsTissue engineering applicationsSilk fibroinMechanical strengthEngineering applicationsFabricated composite scaffoldsNatural extra cellular matrixBiocompatibility of scaffoldsDifferent blending ratiosFreeze-drying techniqueSilk fibroin-chitosanGood interconnectivityTensile testsSuitable porositySurface wettabilityBlending ratioDegradation measurementsBombyx mori silkwormPore sizeChitosan-gelatinFibroinCell affinityDegradation rateExtra-cellular matrixWater uptake
2017
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications
Pyzocha NK, Chen S. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology 2017, 13: 347-356. PMID: 29121460, PMCID: PMC6768076, DOI: 10.1021/acschembio.7b00800.Peer-Reviewed Original ResearchConceptsGenome engineering applicationsCRISPR-Cas genome editing technologiesMicrobial adaptive immune systemGenome editing technologyEffector enzymeNucleic acid cleavageEditing technologyUnique propertiesModern molecular biologyEngineering applicationsEffector proteinsMammalian cellsMolecular biologyAdaptive immune systemWide diversityTechnologyEnzymeApplicationsFunctionalityAcid cleavageImmune systemBiologyProteinDNADiversity
2013
Influence of Chitosan Concentration on Cell Viability and Proliferation in Vitro by Changing Film Topography
Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Influence of Chitosan Concentration on Cell Viability and Proliferation in Vitro by Changing Film Topography. Journal Of Applied Biomaterials & Functional Materials 2013, 11: 151-158. PMID: 23413128, DOI: 10.5301/jabfm.2012.10449.Peer-Reviewed Original ResearchConceptsChitosan filmsAtomic force microscopyFilm topographyTissue engineering applicationsChitosan concentrationPolymer surface topographyNeural tissue engineeringEnvironmental scanning electron microscopyScanning electron microscopyEngineering applicationsSurface topographyTissue engineeringAFM profilesFilmsForce microscopyTopography changesVitro biological propertiesChitosan solutionElectron microscopyChitosan polymerAlkaline precipitationNatural polysaccharidesTopographyPropertiesBridge
2010
Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds
Nerurkar NL, Sen S, Baker BM, Elliott DM, Mauck RL. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomaterialia 2010, 7: 485-491. PMID: 20728589, PMCID: PMC2994961, DOI: 10.1016/j.actbio.2010.08.011.Peer-Reviewed Original ResearchConceptsTissue engineering applicationsElectrospun scaffoldsNanofibrous scaffoldsEngineering applicationsFiber-reinforced soft tissuesDynamic cultureElectrospun nanofibrous scaffoldsCellular ingressSmall pore sizeDynamic culture conditionsMechanical propertiesScaffold thicknessTensile modulusFree-swelling conditionsPore sizeFree-swelling cultureHeterogeneous depositionDense packingInfiltration resultsIngressScaffoldsKnee meniscusApplicationsModulusSoft tissue
2009
Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus
Nerurkar NL, Baker BM, Sen S, Wible EE, Elliott DM, Mauck RL. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nature Materials 2009, 8: 986-992. PMID: 19855383, PMCID: PMC3415301, DOI: 10.1038/nmat2558.Peer-Reviewed Original ResearchConceptsMulti-scale structural hierarchyAnnulus fibrosus tissue engineeringTissue engineering applicationsLoad-bearing tissuesTensile responseEngineering applicationsTissue engineeringLaminatesBiomimetic materialsComplex mechanical functionsNative tissueStructural hierarchySuccessful engineeringEngineeringScaffoldsAnnulus fibrosusGreat interestShearingMechanical functionComplex tissuesDepositionMaterials
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply