2024
A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data
Han Y, Lin Q, Kuang L, Zhao B, Gong X, Cong F, Wang Y, Calhoun V. A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data. Biomedical Signal Processing And Control 2024, 95: 106471. DOI: 10.1016/j.bspc.2024.106471.Peer-Reviewed Original ResearchTucker-2 modelMulti-subject fMRI dataFactor matricesCore tensorHalf-quadratic splittingTensor structure informationLow-rank constraintTensor sparsitySparsity constraintQuadratic splittingTask-related fMRI dataImprovement of accuracyEnhancement methodOrthogonality constraintsFMRI dataProcrustes solutionSimulated fMRI dataTucker-3 modelSparsityTemporal evidenceResting-state fMRI dataIdentity matrixDecomposition modelIntrinsic relationshipStructural informationMode Coresets for Efficient, Interpretable Tensor Decompositions: An Application to Feature Selection in fMRI Analysis
Gabrielson B, Yang H, Vu T, Calhoun V, Adali T. Mode Coresets for Efficient, Interpretable Tensor Decompositions: An Application to Feature Selection in fMRI Analysis. IEEE Access 2024, 12: 192356-192376. DOI: 10.1109/access.2024.3517338.Peer-Reviewed Original ResearchTensor decompositionSize of modern datasetsRank-1 tensorsComputational complexity scalesCore tensorTucker decompositionFeature selectionComputational complexitySelection schemeData tensorMultidimensional arraysRank-1CoresetTensor dataMatrix decompositionModern datasetsMassive sizeMyriad of applicationsMethod efficiencyDatasetSelection abilityComplexity scalesMeasure of discrepancyWell-approximatedDecomposition method
2016
Accelerated High-Dimensional MR Imaging With Sparse Sampling Using Low-Rank Tensors
He J, Liu Q, Christodoulou A, Ma C, Lam F, Liang Z. Accelerated High-Dimensional MR Imaging With Sparse Sampling Using Low-Rank Tensors. IEEE Transactions On Medical Imaging 2016, 35: 2119-2129. PMID: 27093543, PMCID: PMC5487008, DOI: 10.1109/tmi.2016.2550204.Peer-Reviewed Original ResearchConceptsLow-rank tensorSparsity constraintImage reconstructionGroup sparsity constraintHigh-dimensional imagesAlternating Direction MethodCore tensorSubspace estimationData spaceLong data acquisition timeLow-rankUndersampled dataSparse samplingDirection methodData acquisition timeImagesMeasured dataSparsityAcquisition timeConstraintsMathematical structureApplicationsDatasetMRI applicationsSubspace
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply