2024
Oncogenic Kras induces spatiotemporally specific tissue deformation through converting pulsatile into sustained ERK activation
Xin T, Gallini S, Wei H, Gonzalez D, Matte-Martone C, Machida H, Fujiwara H, Pasolli H, Suozzi K, Gonzalez L, Regot S, Greco V. Oncogenic Kras induces spatiotemporally specific tissue deformation through converting pulsatile into sustained ERK activation. Nature Cell Biology 2024, 26: 859-867. PMID: 38689013, PMCID: PMC11519783, DOI: 10.1038/s41556-024-01413-y.Peer-Reviewed Original ResearchERK signalingStem cellsSquamous cell carcinomaHair folliclesOncogenic KRAS mutationsCell carcinomaKRAS mutationsSustained ERK activationERK signaling dynamicsOncogenic mutationsOncogenic KrasERK activationStem cell behaviorIntravital imagingAbnormal cell divisionModulates specific featuresKrasG12DTissue deformationSpatiotemporally specific mannerSustained ERK signalingMutationsLiving miceFolliclesTissue disruptionSingle-cell level
2020
Modeling RBE‐weighted dose variations in irregularly moving abdominal targets treated with carbon ion beams
Meschini G, Kamp F, Hofmaier J, Reiner M, Sharp G, Paganetti H, Belka C, Wilkens JJ, Carlson DJ, Parodi K, Baroni G, Riboldi M. Modeling RBE‐weighted dose variations in irregularly moving abdominal targets treated with carbon ion beams. Medical Physics 2020, 47: 2768-2778. PMID: 32162332, DOI: 10.1002/mp.14135.Peer-Reviewed Original ResearchConceptsEstimation errorIrregular breathing motionIon beamSoft tissue deformationMotion effectsRespiratory motion modelTissue deformationMotion modelCarbon ion beamsProper accuracyWater equivalent depthBreathing motionMedian estimation errorSimulationsPhantom validationEquivalent depthEffects of motionEquivalent uniform doseMotionAbdominal targetsBeamRespiratory motionScanned carbon ion beamsAccuracy decreasesLarge values
2015
Physical Model Based Recovery of Displacement and Deformations from 3D Medical Images
Yang P, Delorenzo C, Papademetris X, Duncan J. Physical Model Based Recovery of Displacement and Deformations from 3D Medical Images. 2015, 309-329. DOI: 10.1007/978-0-387-09749-7_17.Peer-Reviewed Original Research
2010
Constrained Non-rigid Registration Using Lagrange Multipliers for Application in Prostate Radiotherapy
Lu C, Chelikani S, Papademetris X, Staib L, Duncan J. Constrained Non-rigid Registration Using Lagrange Multipliers for Application in Prostate Radiotherapy. 2010, 133-138. DOI: 10.1109/cvprw.2010.5543137.Peer-Reviewed Original Research
2007
A REALISTIC BRAIN PHANTOM FOR 3D DEFORMATION RECOVERY
DeLorenzo C, Papademetris X, Vives K, Spencer D, Duncan J. A REALISTIC BRAIN PHANTOM FOR 3D DEFORMATION RECOVERY. 2007, 9-12. DOI: 10.1109/isbi.2007.356775.Peer-Reviewed Original ResearchSoft tissue deformationSparse intraoperative dataSurface tracking algorithmDeformation recoverySurface trackingTissue deformationRealistic brain phantomBiomechanical modelBrain phantomDeformationIntraoperative brainTracking algorithmPhysical propertiesSurfacePhantomReliable testingSimulationsTracking
2006
Combined Feature/Intensity-Based Brain Shift Compensation Using Stereo Guidance
DeLorenzo C, Papademetris X, Vives K, Spencer D, Duncan J. Combined Feature/Intensity-Based Brain Shift Compensation Using Stereo Guidance. 2006, 335-338. DOI: 10.1109/isbi.2006.1624921.Peer-Reviewed Original ResearchSoft tissue deformationBrain shift compensationImage-derived informationSurface displacementsTracking accuracySurface motionTissue deformationAppropriate model parametersShift compensationBrain motionReal surfacesBiomechanical modelStereo camera imagesModel parametersCompensation systemData tradeoffsBrain displacementDisplacementCamera imagesMotionDeformationAccuracyImage intensity
2002
Estimation of 3-D Left Ventricular Deformation from Medical Images Using Biomechanical Models
Papademetris* X, Sinusas AJ, Dione DP, Constable RT, Duncan JS. Estimation of 3-D Left Ventricular Deformation from Medical Images Using Biomechanical Models. IEEE Transactions On Medical Imaging 2002, 21: 786. PMID: 12374316, DOI: 10.1109/tmi.2002.801163.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsCoronary DiseaseDogsElasticityFinite Element AnalysisHeart VentriclesHumansImage EnhancementImaging, Three-DimensionalMagnetic Resonance Imaging, CineModels, CardiovascularPattern Recognition, AutomatedReproducibility of ResultsSensitivity and SpecificityStress, MechanicalConceptsDense motion fieldRegional cardiac deformationLinear elastic modelSoft tissue deformationMotion fieldTerms of strainBiomechanical modelDeformation estimationTissue deformationFiber directionDeformationThree-dimensional image sequencesCardiac deformationHeart wallGood agreementHeart deformationGeneric methodologyMuscle fiber directionImage-derived informationImage sequencesEstimationWallSpecific directionQuantitative estimationInitial correspondence
1999
Recovery of Soft Tissue Object Deformation from 3D Image Sequences Using Biomechanical Models
Papademetris X, Shi P, Dione D, Sinusas A, Todd Constable R, Duncan J. Recovery of Soft Tissue Object Deformation from 3D Image Sequences Using Biomechanical Models. Lecture Notes In Computer Science 1999, 1613: 352-357. DOI: 10.1007/3-540-48714-x_28.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply