2024
Diffusion-based Bayesian posterior distribution prediction of kinetic parameters in dynamic PET
Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, Fakhri G, Ma C, Ouyang J. Diffusion-based Bayesian posterior distribution prediction of kinetic parameters in dynamic PET. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657955.Peer-Reviewed Original ResearchConditional variational autoencoderEfficient deep learning-based approachMarkov chain Monte CarloDenoising diffusion probabilistic modelDeep learning-based approachDiffusion probabilistic modelLearning-based approachApproximate posterior distributionPosterior distributionVariational autoencoderHeavy computationTau protein aggregationBayesian inferenceProbabilistic modelData-drivenStudy molecular processesBayesian posterior distributionProtein aggregationMetropolis-Hastings Markov chain Monte CarloMolecular processesAlzheimer's diseaseNeurodegenerative diseasesKinetic parametersEstimate posterior distributionsAutoencoderMultimodality Molecular Imaging of Brain Tumor Using Simultaneous [18F]FET-PET/MRSI
Ma C, Han P, Marin T, Zhuo Y, Shih H, Fakhri G. Multimodality Molecular Imaging of Brain Tumor Using Simultaneous [18F]FET-PET/MRSI. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10656528.Peer-Reviewed Original ResearchList-mode dataMR spectroscopic imagingSpatial resolutionAccurate brain tumor delineationMR physicsIsotropic resolutionBrain tumor delineationImprove treatment planningSpectroscopic imagingTumor delineationSignal-to-noise ratioIntact blood-brain barrierImaging speedAmino acid radiotracerImaging timeMR signalHigher proliferation activityStructural MRTreatment planningBlood-brain barrierMR spectroscopic imaging dataMolecular imaging of brain tumorsTumor involvementTumor infiltrationTumor marginsPET motion correction using subspace-based real-time MR imaging in simultaneous PET/MR
Mounime I, Marin T, Han P, Ouyang J, Gori P, Angelini E, Fakhri G, Ma C. PET motion correction using subspace-based real-time MR imaging in simultaneous PET/MR. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657647.Peer-Reviewed Original ResearchOrdered-subset expectation maximizationMotion correctionGated reconstructionsMotion-corrected PET reconstructionsPET eventsCardiac motion phasesMotion correction methodCardiac motionMotion phaseReconstructed dynamic imagesPET reconstructionReal-time MR imagingSimultaneous PET/MRPatient motionSoft tissue contrastDynamic MR image reconstructionReference phaseMitigate artifactsLow-rank propertyMR image reconstructionPositron emission tomographyManifold learning frameworkSpatial resolutionBlurring artifactsImage reconstructionFree‐breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model
Lee W, Han P, Marin T, Mounime I, Eslahi S, Djebra Y, Chi D, Bijari F, Normandin M, Fakhri G, Ma C. Free‐breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model. Magnetic Resonance In Medicine 2024 PMID: 39402014, DOI: 10.1002/mrm.30284.Peer-Reviewed Original ResearchExtracellular volume mappingContrast agent injectionExtracellular volumeGradient echo readoutECV mapsAgent injectionWhole heartEcho readoutExtracellular volume valuesVoxel-by-voxelInversion recovery sequenceSpatial resolutionScan timeImaging timeIn vivo studiesHealthy volunteersModel-based methodsRecovery sequenceInjectionReadoutPoint-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model
Liu X, Woo J, Ma C, Ouyang J, Fakhri G. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. 2011 IEEE Nuclear Science Symposium Conference Record 2024, 00: 1-1. PMID: 39445308, PMCID: PMC11497479, DOI: 10.1109/nss/mic/rtsd57108.2024.10656071.Peer-Reviewed Original ResearchAccelerated 3D metabolite T1 mapping of the brain using variable‐flip‐angle SPICE
Zhao Y, Li Y, Guo R, Jin W, Sutton B, Ma C, Fakhri G, Li Y, Luo J, Liang Z. Accelerated 3D metabolite T1 mapping of the brain using variable‐flip‐angle SPICE. Magnetic Resonance In Medicine 2024, 92: 1310-1322. PMID: 38923032, DOI: 10.1002/mrm.30200.Peer-Reviewed Original ResearchConceptsLow-rank tensor modelGeneralized series modelMetabolite TExperimental resultsBrain metabolitesClinically acceptable scan timeEfficient encodingPhantom experimental resultsAcceptable scan timeNoisy dataSparse samplingImaging problemsData processingHealthy subject dataVariable flip angleFlip angleTensor modelSaturation effectsQuantitative metabolic imagingMRSI techniquePhantomScan timeData acquisitionMetabolic imagingT1 mappingSparsity Constrained Linear Tangent Space Alignment Model (LTSA) for 3d Cardiac Extracellular Volume Mapping
Mounime I, Lee W, Marin T, Han P, Djebra Y, Eslahi S, Gori P, Angelini E, Fakhri G, Ma C. Sparsity Constrained Linear Tangent Space Alignment Model (LTSA) for 3d Cardiac Extracellular Volume Mapping. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635692.Peer-Reviewed Original ResearchT)-space dataExtracellular volume mappingIntrinsic low-dimensional manifold structureCardiac tissue propertiesImproved image reconstructionLow-dimensional manifold structureExtracellular volumeFast MRI methodSparsity constraintModel-based methodsSuperior performanceSpace alignmentT1 mappingManifold structureImage reconstructionT)-spacePost-contrast T1 mappingTissue propertiesFree breathingConcentration of contrast agentLongitudinal relaxation timeAlignment modelDynamic MR imagingSparsityAlignment matrixA deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression
Lee W, Zhuo Y, Marin T, Han P, Chi D, Fakhri G, Ma C. A deep learning-based approach to nuisance signal removal from MRSI data aqcuired without suppression. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2024 DOI: 10.58530/2024/0259.Peer-Reviewed Original ResearchDeep learning-based methodsLearning-based methodsU-Net structureSignal removalIn vivo MRSI dataNeural networkU-NetMRSI dataImage reconstructionSuperior performanceData processingRobust performanceHankel matrixNetworkNuisance signalsConventional methodsPerformanceMRSI signalsSignalMethodRemove nuisance signalsRemovalHankelFree-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model
Lee W, Han P, Marin T, Mounime I, Eslahi S, Djebra Y, Chi D, Fakhri G, Ma C. Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2024 DOI: 10.58530/2024/1493.Peer-Reviewed Original ResearchDiffusion Model-Based Posterior Distribution Prediction for Kinetic Parameter Estimation in Dynamic PET
Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, Fakhri G, Ma C, Ouyang J. Diffusion Model-Based Posterior Distribution Prediction for Kinetic Parameter Estimation in Dynamic PET. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39530051, PMCID: PMC11554386, DOI: 10.1109/isbi56570.2024.10635805.Peer-Reviewed Original ResearchPosterior distributions of kinetic parametersDenoising diffusion probabilistic modelHyperphosphorylated tauP-tauDiffusion probabilistic modelAlzheimer's diseaseNeurodegenerative diseasesKinetic parametersPosterior distributionInference efficiencyComputational needsEstimate kinetic parametersProbabilistic modelComputation timeThe role of 18F-FDG PET in minimizing variability in gross tumor volume delineation of soft tissue sarcomas
Najem E, Marin T, Zhuo Y, Lahoud R, Tian F, Beddok A, Rozenblum L, Xing F, Moteabbed M, Lim R, Liu X, Woo J, Lostetter S, Lamane A, Chen Y, Ma C, El Fakhri G. The role of 18F-FDG PET in minimizing variability in gross tumor volume delineation of soft tissue sarcomas. Radiotherapy And Oncology 2024, 194: 110186. PMID: 38412906, PMCID: PMC11042980, DOI: 10.1016/j.radonc.2024.110186.Peer-Reviewed Original ResearchGross tumor volume delineationGross tumor volumeDice similarity coefficientF-FDG PET imagingSoft tissue sarcomasInter-reader variabilityGTV delineationRadiation therapy treatment planningF-FDGF-FDG PETTherapy treatment planningPerformance level estimationTumor volume delineationTissue sarcomasPET imagingVolume delineationSimultaneous truthHausdorff distanceDice similarity coefficient scoreAccurate gross tumor volumeImaging modality groupsWilcoxon signed-rank testStatistically significant decreaseSigned-rank testTumor volume
2023
Attenuation correction for PET imaging using conditional denoising diffusion probabilistic model
Dong Y, Jang S, Han P, Johnson K, Ma C, Fakhri G, Li Q, Gong K. Attenuation correction for PET imaging using conditional denoising diffusion probabilistic model. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338188.Peer-Reviewed Original ResearchDiffusion probabilistic modelGenerative adversarial networkConditional encodingAttenuation correctionDenoising diffusion probabilistic modelLow-level featuresProbabilistic modelAttenuation coefficientAdversarial networkExtract featuresPET/MR systemsEncodingPET acquisitionNovel methodDiffusion encodingMagnetic resonanceImagesPET imagingCorrectionMR imagingUNetAttenuationNetworkFeaturesResonanceB1 inhomogeneity‐corrected T1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch‐Siegert shift and magnetization transfer effects
Jang A, Han P, Ma C, Fakhri G, Wang N, Samsonov A, Liu F. B1 inhomogeneity‐corrected T1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch‐Siegert shift and magnetization transfer effects. Magnetic Resonance In Medicine 2023, 90: 1859-1873. PMID: 37427533, PMCID: PMC10528411, DOI: 10.1002/mrm.29778.Peer-Reviewed Original ResearchConceptsBloch-Siegert shiftBloch-SiegertMagnetization transfer effectsMonte Carlo simulationsSpin-lattice relaxationSpin-bath modelMagnetization transferBinary spin-bath modelCarlo simulationsProton fractionOff-resonance irradiationIn vivo brain studiesBloch simulationsPhantom experimentsMagnetizationEstimationTransmitted fieldQuantitative magnetization transferMethod performanceMT effectSignal equationBalanced Steady-State Free Precession and Radial Sampling for Arterial Spin Labeled Perfusion Imaging
Han P, Marin T, Zhuo Y, Ouyang J, Fakhri G, Ma C. Balanced Steady-State Free Precession and Radial Sampling for Arterial Spin Labeled Perfusion Imaging. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0373.Peer-Reviewed Original ResearchDirect estimation of metabolite maps from undersampled k-space data using linear tangent space alignment
Ma C, Marin T, Han P, Fakhri G. Direct estimation of metabolite maps from undersampled k-space data using linear tangent space alignment. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0496.Peer-Reviewed Original ResearchArterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling
Han P, Marin T, Zhuo Y, Ouyang J, El Fakhri G, Ma C. Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling. Magnetic Resonance Imaging 2023, 102: 126-132. PMID: 37187264, PMCID: PMC10524790, DOI: 10.1016/j.mri.2023.05.005.Peer-Reviewed Original ResearchConceptsOff-resonance effectsBalanced steady-state free precessionPhase-cycling techniqueTemporal SNRBalanced steady-state free precession acquisitionRadial sampling schemeSpoiled gradient-recalled acquisitionRadial samplingCartesian sampling schemeBalanced steady-state free precession readoutK-space dataSampling schemeSpin labelingSteady-state free precessionK-spaceImage readoutBanding artifactsMotion-related artifactsReadoutFree precessionArterial spin labelingImage reconstructionParallel imagingImaging timePerfusion-weighted imaging
2022
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling
Djebra Y, Marin T, Han P, Bloch I, Fakhri G, Ma C. Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling. IEEE Transactions On Medical Imaging 2022, 42: 158-169. PMID: 36121938, PMCID: PMC10024645, DOI: 10.1109/tmi.2022.3207774.Peer-Reviewed Original ResearchConceptsSpace alignmentSampled k-space dataState-of-the-art methodsIntrinsic low-dimensional manifold structureNumerical simulation studyLow-dimensional manifold structureState-of-the-artLinear subspace modelSparsity modelModel-based frameworkSubspace modelManifold structureMathematical modelManifold modelSparse samplingImage reconstructionMRI applicationsDynamic magnetic resonance imagingSpatiotemporal signalsSpatial resolutionPerformanceSimulation studyImagesMethodSparsityJoint spectral quantification of MR spectroscopic imaging using linear tangent space alignment‐based manifold learning
Ma C, Han P, Zhuo Y, Djebra Y, Marin T, Fakhri G. Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment‐based manifold learning. Magnetic Resonance In Medicine 2022, 89: 1297-1313. PMID: 36404676, PMCID: PMC9892363, DOI: 10.1002/mrm.29526.Peer-Reviewed Original ResearchConceptsSubspace-based methodsManifold learningIntrinsic low-dimensional structureGlobal coordinationLearning-based methodsNumerical simulation dataSpatial smoothness constraintSparsity constraintSpace alignmentSubspace modelSmoothness constraintSuperior performanceRoot mean square errorLinear transformationMechanical simulationsLow-dimensionalSquare errorSubspaceExperimental dataSpectroscopic imagingQuantum mechanical simulationsCoordinate alignmentMR spectroscopic imagingSpectral quantificationSimulated dataWalking with the ISMRM in the footprints of our MR history
Mandija S, Ma C, Bai R, Feng L, Giganti F, Ianus A, Lee H, Li F, Welton T, Calamante F. Walking with the ISMRM in the footprints of our MR history. Magnetic Resonance In Medicine 2022, 89: 883-885. PMID: 36353850, DOI: 10.1002/mrm.29488.Peer-Reviewed Original ResearchWalking With the ISMRM in the Footprints of Our MR History
Mandija S, Ma C, Bai R, Feng L, Giganti F, Ianus A, Lee H, Li F, Welton T, Calamante F. Walking With the ISMRM in the Footprints of Our MR History. Journal Of Magnetic Resonance Imaging 2022, 57: 1934-1936. PMID: 36353846, DOI: 10.1002/jmri.28459.Peer-Reviewed Original Research