2022
Brain–phenotype models fail for individuals who defy sample stereotypes
Greene AS, Shen X, Noble S, Horien C, Hahn CA, Arora J, Tokoglu F, Spann MN, Carrión CI, Barron DS, Sanacora G, Srihari VH, Woods SW, Scheinost D, Constable RT. Brain–phenotype models fail for individuals who defy sample stereotypes. Nature 2022, 609: 109-118. PMID: 36002572, PMCID: PMC9433326, DOI: 10.1038/s41586-022-05118-w.Peer-Reviewed Original ResearchConceptsBrain-phenotype relationshipsBrain functional organizationCognitive constructsIndividual differencesNeurocognitive measuresBrain activityNeurocognitive scoresStereotypical profileNeural targetsClinical interventionsNeural circuitsFunctional organizationIndividualsSuch relationshipsData-driven approachRelationshipStereotypesLarge-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity
Tejavibulya L, Peterson H, Greene A, Gao S, Rolison M, Noble S, Scheinost D. Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity. NeuroImage 2022, 252: 119040. PMID: 35272202, PMCID: PMC9013515, DOI: 10.1016/j.neuroimage.2022.119040.Peer-Reviewed Original ResearchConceptsHanded individualsFunctional connectivityLanguage areasWhole-brain functional connectivityRight-handed individualsFunctional organizationWhole-brain levelIndividual differencesHandedness differencesHandedness effectsFunctional connectomeBrain levelsSomatosensory cortexNetworks of interestWhole brainSex differencesBrainConnectomeIndividualsData-driven analysisConnectivityDistinct patternsLateralizationDifferencesSimilar amounts
2019
Individualized functional networks reconfigure with cognitive state
Salehi M, Karbasi A, Barron DS, Scheinost D, Constable RT. Individualized functional networks reconfigure with cognitive state. NeuroImage 2019, 206: 116233. PMID: 31574322, PMCID: PMC7216521, DOI: 10.1016/j.neuroimage.2019.116233.Peer-Reviewed Original ResearchConceptsCognitive stateFunctional networksMultiple cognitive statesFunctional network organizationFunctional organizationBrain functional networksTask demandsFMRI dataSimilar tasksParcellation approachHuman brainNetwork organizationExtensive evidenceMultiple subjectsBrainNetwork membershipTaskOrganizationSubjectsParcellationSuch reconfigurationMeasuresMembershipFindingsSuch definitions
2018
Task-induced brain state manipulation improves prediction of individual traits
Greene AS, Gao S, Scheinost D, Constable RT. Task-induced brain state manipulation improves prediction of individual traits. Nature Communications 2018, 9: 2807. PMID: 30022026, PMCID: PMC6052101, DOI: 10.1038/s41467-018-04920-3.Peer-Reviewed Original ResearchConceptsBrain statesIndividual differencesBrain-behavior relationshipsFluid intelligence scoresTask-based functional connectivity analysisResting-state fMRI dataBrain functional organizationFunctional connectivity analysisCognitive tasksFluid intelligenceIntelligence scoresFunctional connectivityFMRI dataConnectivity analysisHuman behaviorIndividual traitsTaskCertain tasksFunctional organizationOutperform modelsSuch relationshipsCognitionState manipulationIntelligenceVariance
2017
Connectome-based Models Predict Separable Components of Attention in Novel Individuals
Rosenberg MD, Hsu WT, Scheinost D, Constable R, Chun MM. Connectome-based Models Predict Separable Components of Attention in Novel Individuals. Journal Of Cognitive Neuroscience 2017, 30: 160-173. PMID: 29040013, DOI: 10.1162/jocn_a_01197.Peer-Reviewed Original ResearchConceptsConnectome-based predictive modelingAttention Network TaskExecutive controlIntrinsic functional organizationRT variabilityANT performanceInfluential modelFunctional connectivityBrain's intrinsic functional organizationComponents of attentionExecutive control scoresResting-state functional connectivityResting-state dataFunctional brain networksFunctional organizationTask-based dataAttentional abilitiesUpcoming stimulusExplicit taskSustained attentionFMRI scanningAttention factorNovel individualsAdditional independent componentNetwork tasksAn exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks
Salehi M, Karbasi A, Shen X, Scheinost D, Constable RT. An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. NeuroImage 2017, 170: 54-67. PMID: 28882628, PMCID: PMC5905726, DOI: 10.1016/j.neuroimage.2017.08.068.Peer-Reviewed Original ResearchConceptsIndividualized parcellationParcellation techniqueFunctional networksCross-validated predictive modelSpecific functional networksCerebral cortexPatient subgroupsFunctional connectivity dataFunctional organizationBrainParcellation schemesClinical applicationParcellation approachParcellationSexSubgroupsConnectivity dataIndividualized studyNetwork organizationIndividualsAmple evidencePatientsCortexCan brain state be manipulated to emphasize individual differences in functional connectivity?
Finn ES, Scheinost D, Finn DM, Shen X, Papademetris X, Constable RT. Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage 2017, 160: 140-151. PMID: 28373122, PMCID: PMC8808247, DOI: 10.1016/j.neuroimage.2017.03.064.Peer-Reviewed Original ResearchConceptsIndividual differencesFunctional connectivityBrain statesIndividual differences researchBrain functional organizationHuman Connectome ProjectDifferences researchBrain activityConnectome ProjectSubject variabilityNetworks of interestBehavioral phenotypesCertain tasksFunctional organizationDefault stateNeutral backdropOutline questionsFuture studiesConnectivityTask
2016
Functional magnetic resonance connectivity studies in infants born preterm: suggestions of proximate and long‐lasting changes in language organization
Kwon SH, Scheinost D, Vohr B, Lacadie C, Schneider K, Dai F, Sze G, Constable RT, Ment LR. Functional magnetic resonance connectivity studies in infants born preterm: suggestions of proximate and long‐lasting changes in language organization. Developmental Medicine & Child Neurology 2016, 58: 28-34. PMID: 27027605, PMCID: PMC6426123, DOI: 10.1111/dmcn.13043.Peer-Reviewed Original Research
2015
Preterm birth alters neonatal, functional rich club organization
Scheinost D, Kwon SH, Shen X, Lacadie C, Schneider KC, Dai F, Ment LR, Constable RT. Preterm birth alters neonatal, functional rich club organization. Brain Structure And Function 2015, 221: 3211-3222. PMID: 26341628, PMCID: PMC4779074, DOI: 10.1007/s00429-015-1096-6.Peer-Reviewed Original ResearchConceptsPT neonatesTerm neonatesRich-club organizationPreterm birth altersTerm-equivalent ageClub organizationFunctional magnetic resonance imagingMagnetic resonance imagingPT birthBirth altersWhole-brain networksNeonatesResonance imagingPretermFunctional connectivityFunctional segregationCognitive difficultiesEquivalent ageFunctional organizationBrain
2014
The impact of image smoothness on intrinsic functional connectivity and head motion confounds
Scheinost D, Papademetris X, Constable RT. The impact of image smoothness on intrinsic functional connectivity and head motion confounds. NeuroImage 2014, 95: 13-21. PMID: 24657356, PMCID: PMC4076413, DOI: 10.1016/j.neuroimage.2014.03.035.Peer-Reviewed Original ResearchConceptsResting-state functional magnetic resonance imagingWhole-brain functional organizationFunctional magnetic resonance imagingIntrinsic functional connectivityMagnetic resonance imagingFunctional connectivity studiesResonance imagingRs-fMRIFunctional connectivityClinical populationsGroup differencesConnectivity studiesHead motionFunctional organizationHead movementsRecent studies
2013
Potential Use and Challenges of Functional Connectivity Mapping in Intractable Epilepsy
Constable RT, Scheinost D, Finn ES, Shen X, Hampson M, Winstanley FS, Spencer DD, Papademetris X. Potential Use and Challenges of Functional Connectivity Mapping in Intractable Epilepsy. Frontiers In Neurology 2013, 4: 39. PMID: 23734143, PMCID: PMC3660665, DOI: 10.3389/fneur.2013.00039.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsFunctional connectivity mappingIntractable epilepsyFunctional connectivityResting-state functional magnetic resonanceConnectivity analysisConnectivity mappingWhole-brain assessmentFunctional brain organizationFunctional connectivity analysisFunctional magnetic resonanceEpileptogenic tissueEpilepsy patientsSurgical proceduresCortical regionsEpilepsyCompensatory responseBrain organizationHuman brainBrainFunctional organizationMagnetic resonanceVoxel levelTissuePatientsReview