2024
Alterations in Volume and Intrinsic Resting-State Functional Connectivity Detected at Brain MRI in Individuals with Opioid Use Disorder.
Mehta S, Peterson H, Ye J, Ibrahim A, Saeed G, Linsky S, Kreinin I, Tsang S, Nwanaji-Enwerem U, Raso A, Arora J, Tokoglu F, Yip S, Hahn C, Lacadie C, Greene A, Jeon S, Constable R, Barry D, Redeker N, Yaggi H, Scheinost D, Weintraub E. Alterations in Volume and Intrinsic Resting-State Functional Connectivity Detected at Brain MRI in Individuals with Opioid Use Disorder. Radiology 2024, 313: e240514. PMID: 39656127, DOI: 10.1148/radiol.240514.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainFemaleHumansMagnetic Resonance ImagingMaleOpioid-Related DisordersYoung AdultConceptsHealthy control participantsRight medial temporal lobeOpioid use disorderFunctional brain alterationsMedial temporal lobeOpioid use disorder groupFunctional connectivityUse disorderControl participantsBrain alterationsIntrinsic resting-state functional connectivityTemporal lobeMedial prefrontal cortex volumesVoxel-wise linear regressionT1-weighted MRIResting-state functional connectivityFamily-wise error correctionPrefrontal cortex volumeResting-state functional MRIIncreased functional connectivityIntrinsic connectivity distributionFunctional MRI studiesFemale participantsRegional brain volumesAssess group differencesMapping the structure-function relationship along macroscale gradients in the human brain
Collins E, Chishti O, Obaid S, McGrath H, King A, Shen X, Arora J, Papademetris X, Constable R, Spencer D, Zaveri H. Mapping the structure-function relationship along macroscale gradients in the human brain. Nature Communications 2024, 15: 7063. PMID: 39152127, PMCID: PMC11329792, DOI: 10.1038/s41467-024-51395-6.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainBrain MappingCognitionFemaleHumansMagnetic Resonance ImagingMaleMotor CortexNatural Language ProcessingNerve NetStructure-Activity RelationshipWhite MatterConceptsStructure-function correspondenceBrain regionsMacroscale gradientWhite matter connectivityHuman brain regionsStructure-function couplingNeural network propertiesAssociation cortexCognitive functionBridging neuroscienceFunctional coactivationOrganizational axisCortical thicknessHuman brainMotor cortexLanguage processingBrainCortexMotor functionNatural language processingNetwork propertiesMotorNeuroscienceNatural languageData repositoriesConstrained alternating minimization for parameter mapping (CAMP)
Elsaid N, Dispenza N, Hu C, Peters D, Constable R, Tagare H, Galiana G. Constrained alternating minimization for parameter mapping (CAMP). Magnetic Resonance Imaging 2024, 110: 176-183. PMID: 38657714, PMCID: PMC11193090, DOI: 10.1016/j.mri.2024.04.029.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsArtifactsBrainHumansImage EnhancementImage Processing, Computer-AssistedMagnetic Resonance ImagingPhantoms, ImagingReproducibility of ResultsConceptsAlternating minimizationAccelerated parameter mappingImage qualityReconstructed image qualityEfficient reconstruction algorithmSacrificing model accuracyParameter mapsPhantom studyK-space samplingAcceleration datasetsK-spaceUndersampling artifactsCartesian acquisitionConsecutive imagesReconstruction algorithmIndividual imagesModel cost functionExponential decayEcho timeReconstruction methodCost functionReduce artifactsPhantomScan timeObjective functionEncoding scheme design for gradient-free, nonlinear projection imaging using Bloch-Siegert RF spatial encoding in a low-field, open MRI system
Selvaganesan K, Ha Y, Sun H, Zhang Z, Sun C, Samardzija A, Galiana G, Constable R. Encoding scheme design for gradient-free, nonlinear projection imaging using Bloch-Siegert RF spatial encoding in a low-field, open MRI system. Scientific Reports 2024, 14: 3307. PMID: 38332252, PMCID: PMC10853509, DOI: 10.1038/s41598-024-53703-y.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsArtifactsImage Processing, Computer-AssistedMagnetic Resonance ImagingPhantoms, ImagingConceptsBloch-SiegertSpatial encodingBloch-Siegert shiftGradient-freeLow-field imagesLow fieldsProjection imagesPhase shiftLoop coilEncoding settingsEncoding schemeEncoding trajectoriesLow-field MR imagingSpatial resolutionImage reconstructionOptimization algorithmEncodingMRI systemShift effectHardware setupMR systemOpen MRI systemScheme designAlgorithmImagesMultimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair M, Constable R, Lake E, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nature Communications 2024, 15: 229. PMID: 38172111, PMCID: PMC10764905, DOI: 10.1038/s41467-023-44363-z.Peer-Reviewed Original Research
2023
Magnetic resonance imaging using a nonuniform Bo (NuBo) field-cycling magnet
Selvaganesan K, Wan Y, Ha Y, Wu B, Hancock K, Galiana G, Constable R. Magnetic resonance imaging using a nonuniform Bo (NuBo) field-cycling magnet. PLOS ONE 2023, 18: e0287344. PMID: 37319289, PMCID: PMC10270621, DOI: 10.1371/journal.pone.0287344.Peer-Reviewed Original ResearchConceptsInnovative data acquisitionMain magnetGradient coilsExperimental verificationEcho signalsInitial designField cyclingParallel imagingSuperior soft tissue contrastMagnetsInhomogeneous fieldsLow fieldsSoft tissue contrastReconstruction approachInhomogeneity effectsData acquisitionSpatial encodingPolarization phaseOpen MR systemPowerful noninvasive diagnostic toolSpin echo signalImage acquisitionFieldCoilNew approachFunctional brain networks reflect spatial and temporal autocorrelation
Shinn M, Hu A, Turner L, Noble S, Preller K, Ji J, Moujaes F, Achard S, Scheinost D, Constable R, Krystal J, Vollenweider F, Lee D, Anticevic A, Bullmore E, Murray J. Functional brain networks reflect spatial and temporal autocorrelation. Nature Neuroscience 2023, 26: 867-878. PMID: 37095399, DOI: 10.1038/s41593-023-01299-3.Peer-Reviewed Original Research
2022
A generalizable connectome-based marker of in-scan sustained attention in neurodiverse youth
Horien C, Greene A, Shen X, Fortes D, Brennan-Wydra E, Banarjee C, Foster R, Donthireddy V, Butler M, Powell K, Vernetti A, Mandino F, O'Connor D, Lake E, McPartland J, Volkmar F, Chun M, Chawarska K, Rosenberg M, Scheinost D, Constable R. A generalizable connectome-based marker of in-scan sustained attention in neurodiverse youth. Cerebral Cortex 2022, 33: 6320-6334. PMID: 36573438, PMCID: PMC10183743, DOI: 10.1093/cercor/bhac506.Peer-Reviewed Original ResearchConceptsAttention taskAttentional stateConnectome-based predictive modelingNeurodiverse conditionsSustained attention taskAttention network modelSample of youthNeurotypical participantsSustained attentionBrain correlatesNeurobiological correlatesAttention networkIndividual participantsSeparate samplesYouthParticipantsHead motionTaskCorrelatesAttentionAutismConfoundsNetwork modelGeneralizesHealthcare settingsSex differences in default mode network connectivity in healthy aging adults
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cerebral Cortex 2022, 33: 6139-6151. PMID: 36563018, PMCID: PMC10183749, DOI: 10.1093/cercor/bhac491.Peer-Reviewed Original ResearchMeSH KeywordsAdultBrainConnectomeDefault Mode NetworkFemaleHealthy AgingHumansMagnetic Resonance ImagingMaleNerve NetNeuropsychological TestsSex CharacteristicsConceptsDefault mode networkPreclinical Alzheimer's diseaseAlzheimer's diseaseSex differencesBrain connectivity changesDefault mode network connectivityIntrinsic connectivity distributionSeed-based analysisMode network connectivityMedial prefrontal cortexPosterior DMN nodesHealthy aging adultsImpact of sexLifetime riskDMN connectivityWhole brainPosterior cingulateDMN nodesSignificant sex differencesPrefrontal cortexConnectivity changesAging AdultsHealthy participantsDMN functionMode networkCoordinated anatomical and functional variability in the human brain during adolescence
Bero J, Li Y, Kumar A, Humphries C, Nag S, Lee H, Ahn W, Hahn S, Constable R, Kim H, Lee D. Coordinated anatomical and functional variability in the human brain during adolescence. Human Brain Mapping 2022, 44: 1767-1778. PMID: 36479851, PMCID: PMC9921246, DOI: 10.1002/hbm.26173.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultBrainBrain MappingChildCognitionHumansMagnetic Resonance ImagingMyelin SheathSensorimotor CortexConceptsCortical thicknessCortical areasFunctional connectivityResting-state functional connectivityAssociation cortical areasMultiple cortical areasCortical information processingAge-related changesCortical myelinationAdult brainCytoarchitectural featuresBrain developmentInformation processingBrainDevelopmental changesHuman brainAdolescenceMyelinationPatterns of coordinationMeasuresRegional variationMyelin
2021
Functional Connectivity during Encoding Predicts Individual Differences in Long-Term Memory
Lin Q, Yoo K, Shen X, Constable TR, Chun MM. Functional Connectivity during Encoding Predicts Individual Differences in Long-Term Memory. Journal Of Cognitive Neuroscience 2021, 33: 2279-2296. PMID: 34272957, PMCID: PMC8497062, DOI: 10.1162/jocn_a_01759.Peer-Reviewed Original ResearchMeSH KeywordsBrainBrain MappingHumansIndividualityMagnetic Resonance ImagingMemory, Long-TermMemory, Short-TermConceptsLong-term memoryN-back taskIndividual differencesFunctional connectivityMemory modelWhole-brain functional connectivity networksSubsequent memory effectsRecognition memory modelsMedial temporal lobeWhole-brain functional networksRetention of informationRecollection memoryRecognition memoryMemory performanceNeural basisFunctional connectivity networksLTM formationFMRI dataTemporal lobeMemoryBrain regionsFunctional networksConnectivity networksTaskLittle predictive powerUsing functional connectivity models to characterize relationships between working and episodic memory
Stark GF, Avery EW, Rosenberg MD, Greene AS, Gao S, Scheinost D, Constable R, Chun MM, Yoo K. Using functional connectivity models to characterize relationships between working and episodic memory. Brain And Behavior 2021, 11: e02105. PMID: 34142458, PMCID: PMC8413720, DOI: 10.1002/brb3.2105.Peer-Reviewed Original ResearchConceptsConnectome-based predictive modelsN-back task performanceEpisodic memoryMemory test scoresFunctional connectivityTask performanceN-back memory taskWord scoresTest scoresCritical cognitive abilityPicture-sequencing taskHuman Connectome Project participantsN-back taskFunctional magnetic resonance imaging (fMRI) dataWhole-brain functional connectivityTask functional connectivityFunctional brain connectionsFunctional connectivity modelsFunctional connectionsMemory taskCognitive processesMemory testCognitive abilitiesSequence taskList Sorting
2020
Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain
Makary MM, Polosecki P, Cecchi GA, DeAraujo IE, Barron DS, Constable TR, Whang PG, Thomas DA, Mowafi H, Small DM, Geha P. Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 10015-10023. PMID: 32312809, PMCID: PMC7211984, DOI: 10.1073/pnas.1918682117.Peer-Reviewed Original ResearchMeSH KeywordsAdultBack PainBrainBrain MappingChronic PainFemaleGyrus CinguliHumansMagnetic Resonance ImagingMaleNerve NetNeural PathwaysNucleus AccumbensRisk FactorsConceptsChronic low back pain patientsLow back pain patientsChronic painPain patientsChronic phaseChronic back pain patientsBack pain patientsRostral anterior cingulate cortexAnterior cingulate cortexAdditional independent datasetsRisk of transitionResting-state activityPersistent painBack painAccumbens volumeHealthy controlsNucleus accumbensPainSeparate cohortPatientsCingulate cortexPrevalent diseaseFunctional connectivityLoss of nucleiSubcortical signaturesDistributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals
Avery EW, Yoo K, Rosenberg MD, Greene AS, Gao S, Na DL, Scheinost D, Constable TR, Chun MM. Distributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals. Journal Of Cognitive Neuroscience 2020, 32: 241-255. PMID: 31659926, PMCID: PMC8004893, DOI: 10.1162/jocn_a_01487.Peer-Reviewed Original ResearchMeSH KeywordsAgedAgingAlzheimer DiseaseAmnesiaAttentionCerebral CortexCognitive DysfunctionConnectomeHumansIntelligenceMagnetic Resonance ImagingMemory, Short-TermMiddle AgedModels, BiologicalConceptsFunctional connectivity patternsFluid intelligenceMemory performanceIndividual differencesAttention modelConnectome-based predictive modelingConnectome-based predictive modelsWhole-brain functional connectivity patternsGeneral cognitive abilitySuch individual differencesConnectivity patternsAdult life spanHuman Connectome ProjectHuman Connectome Project dataMemory relateCognitive abilitiesNeural basisSustained attentionMemory scoresParietal regionsFunctional connectivityConnectome ProjectMemory modelOlder adultsMemory
2019
Differential Resting State Connectivity Responses to Glycemic State in Type 1 Diabetes
Parikh L, Seo D, Lacadie C, Belfort-Deaguiar R, Groskreutz D, Hamza M, Dai F, Scheinost D, Sinha R, Constable R, Sherwin R, Hwang JJ. Differential Resting State Connectivity Responses to Glycemic State in Type 1 Diabetes. The Journal Of Clinical Endocrinology & Metabolism 2019, 105: dgz004. PMID: 31511876, PMCID: PMC6936965, DOI: 10.1210/clinem/dgz004.Peer-Reviewed Original ResearchConceptsState functional connectivityHealthy controlsDefault mode networkType 1 diabetes mellitusFunctional connectivityImpact of T1DMAcademic medical centerAngular gyrus connectivityBlood oxygenation levelState connectivity patternsFunctional connectivity analysisHyperinsulinemic euglycemicHypoglycemic unawarenessHypoglycemia unawarenessDiabetes mellitusHypoglycemic clampHypoglycemia awarenessFunctional outcomeMild hypoglycemiaGlycemic stateObservational studyMedical CenterT1DMHC volunteersType 1The individual functional connectome is unique and stable over months to years
Horien C, Shen X, Scheinost D, Constable RT. The individual functional connectome is unique and stable over months to years. NeuroImage 2019, 189: 676-687. PMID: 30721751, PMCID: PMC6422733, DOI: 10.1016/j.neuroimage.2019.02.002.Peer-Reviewed Original ResearchConceptsHigh ID ratesIndividual differencesFunctional connectomeIndividual functional connectomesStable individual differencesID rateResting-state fMRI datasetsFrontoparietal networkFunctional connectivityParietal cortexFMRI datasetsIdiosyncratic aspectsConnectomeHead motionEntire brainFMRIBrainCortexSpecific datasetDifferencesConnectivityMultisite reliability and repeatability of an advanced brain MRI protocol
Schwartz DL, Tagge I, Powers K, Ahn S, Bakshi R, Calabresi PA, Constable R, Grinstead J, Henry RG, Nair G, Papinutto N, Pelletier D, Shinohara R, Oh J, Reich DS, Sicotte NL, Rooney WD, Cooperative O. Multisite reliability and repeatability of an advanced brain MRI protocol. Journal Of Magnetic Resonance Imaging 2019, 50: 878-888. PMID: 30652391, PMCID: PMC6636359, DOI: 10.1002/jmri.26652.Peer-Reviewed Original Research
2018
Task-induced brain state manipulation improves prediction of individual traits
Greene AS, Gao S, Scheinost D, Constable RT. Task-induced brain state manipulation improves prediction of individual traits. Nature Communications 2018, 9: 2807. PMID: 30022026, PMCID: PMC6052101, DOI: 10.1038/s41467-018-04920-3.Peer-Reviewed Original ResearchConceptsBrain statesIndividual differencesBrain-behavior relationshipsFluid intelligence scoresTask-based functional connectivity analysisResting-state fMRI dataBrain functional organizationFunctional connectivity analysisCognitive tasksFluid intelligenceIntelligence scoresFunctional connectivityFMRI dataConnectivity analysisHuman behaviorIndividual traitsTaskCertain tasksFunctional organizationOutperform modelsSuch relationshipsCognitionState manipulationIntelligenceVariance
2017
Connectome-based Models Predict Separable Components of Attention in Novel Individuals
Rosenberg MD, Hsu WT, Scheinost D, Constable R, Chun MM. Connectome-based Models Predict Separable Components of Attention in Novel Individuals. Journal Of Cognitive Neuroscience 2017, 30: 160-173. PMID: 29040013, DOI: 10.1162/jocn_a_01197.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAttentionBrainConflict, PsychologicalConnectomeExecutive FunctionFemaleHumansMagnetic Resonance ImagingMaleModels, NeurologicalOrientationRestYoung AdultConceptsConnectome-based predictive modelingAttention Network TaskExecutive controlIntrinsic functional organizationRT variabilityANT performanceInfluential modelFunctional connectivityBrain's intrinsic functional organizationComponents of attentionExecutive control scoresResting-state functional connectivityResting-state dataFunctional brain networksFunctional organizationTask-based dataAttentional abilitiesUpcoming stimulusExplicit taskSustained attentionFMRI scanningAttention factorNovel individualsAdditional independent componentNetwork tasks
2016
Reorganization of brain connectivity in obesity
Geha P, Cecchi G, Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Human Brain Mapping 2016, 38: 1403-1420. PMID: 27859973, PMCID: PMC6866793, DOI: 10.1002/hbm.23462.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsBrainBrain MappingEatingFemaleHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingMaleMiddle AgedMotionNeural PathwaysObesityOxygenConceptsGlobal brain connectivityDorsal attention networkPeripheral metabolic dysfunctionHum Brain MappSuperior parietal lobuleSomatomotor cortexMetabolic dysfunctionVentrolateral prefrontal cortexPremotor areasCaudate nucleusNeurocognitive impairmentObesityAnterior hippocampusVisual cortexBrain regionsParietal lobuleBrain functionPrefrontal cortexBrain connectivityMilkshake consumptionCortexFeeding decisionsBrain organizationInsulaHomeostatic state