Featured Publications
Comparative Molecular Life History of Spontaneous Canine and Human Gliomas
Amin S, Anderson K, Boudreau C, Martinez-Ledesma E, Kocakavuk E, Johnson K, Barthel F, Varn F, Kassab C, Ling X, Kim H, Barter M, Lau C, Ngan C, Chapman M, Koehler J, Long J, Miller A, Miller C, Porter B, Rissi D, Mazcko C, LeBlanc A, Dickinson P, Packer R, Taylor A, Rossmeisl J, Woolard K, Heimberger A, Levine J, Verhaak R. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell 2020, 37: 243-257.e7. PMID: 32049048, PMCID: PMC7132629, DOI: 10.1016/j.ccell.2020.01.004.Peer-Reviewed Original ResearchConceptsComparative genomic analysisDNA methylation patternsReceptor tyrosine kinasesCell cycle pathwayGenomic analysisMethylation sequencingLife historyMutational processesTyrosine kinaseHigh similarityHuman gliomasTumorigenic mechanismsHost environmentMutational rateSomatic alterationsSporadic gliomasIDH1 R132Canine gliomasMolecular profileGlioma etiologyHuman pediatricPediatric gliomasTranscriptomeKinaseUnique insightsAnalyses of non-coding somatic drivers in 2,658 cancer whole genomes
Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O, Tiao G, Hornshøj H, Hess JM, Juul RI, Lin Z, Feuerbach L, Sabarinathan R, Madsen T, Kim J, Mularoni L, Shuai S, Lanzós A, Herrmann C, Maruvka YE, Shen C, Amin SB, Bandopadhayay P, Bertl J, Boroevich KA, Busanovich J, Carlevaro-Fita J, Chakravarty D, Chan CWY, Craft D, Dhingra P, Diamanti K, Fonseca NA, Gonzalez-Perez A, Guo Q, Hamilton MP, Haradhvala NJ, Hong C, Isaev K, Johnson TA, Juul M, Kahles A, Kahraman A, Kim Y, Komorowski J, Kumar K, Kumar S, Lee D, Lehmann KV, Li Y, Liu EM, Lochovsky L, Park K, Pich O, Roberts ND, Saksena G, Schumacher SE, Sidiropoulos N, Sieverling L, Sinnott-Armstrong N, Stewart C, Tamborero D, Tubio JMC, Umer HM, Uusküla-Reimand L, Wadelius C, Wadi L, Yao X, Zhang CZ, Zhang J, Haber JE, Hobolth A, Imielinski M, Kellis M, Lawrence MS, von Mering C, Nakagawa H, Raphael BJ, Rubin MA, Sander C, Stein LD, Stuart JM, Tsunoda T, Wheeler DA, Johnson R, Reimand J, Gerstein M, Khurana E, Campbell PJ, López-Bigas N, Weischenfeldt J, Beroukhim R, Martincorena I, Pedersen J, Getz G. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 2020, 578: 102-111. PMID: 32025015, PMCID: PMC7054214, DOI: 10.1038/s41586-020-1965-x.Peer-Reviewed Original ResearchConceptsInternational Cancer Genome ConsortiumStructural variantsPoint mutationsDriver discoveryProtein-coding genesNon-coding genesNon-coding regionsPan-cancer analysisDriver point mutationsSomatic driversCancer Genome AtlasRegulatory sequencesCancer genomesUntranslated regionGenome ConsortiumFocal deletionsGenesGenome AtlasGenomeNovel candidatesMutationsRecurrent breakpointsRegion of TP53DiscoveryVariantsSystematic analysis of telomere length and somatic alterations in 31 cancer types
Barthel F, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin S, Akdemir K, Seth S, Song X, Wang Q, Lichtenberg T, Hu J, Zhang J, Zheng S, Verhaak R. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nature Genetics 2017, 49: 349-357. PMID: 28135248, PMCID: PMC5571729, DOI: 10.1038/ng.3781.Peer-Reviewed Original ResearchTruncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma
Lissanu Deribe Y, Shi Y, Rai K, Nezi L, Amin S, Wu C, Akdemir K, Mahdavi M, Peng Q, Chang Q, Hornigold K, Arold S, Welch H, Garraway L, Chin L. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e1296-e1305. PMID: 26884185, PMCID: PMC4780599, DOI: 10.1073/pnas.1513801113.Peer-Reviewed Original ResearchConceptsPREX2 mutationsCross-species gene expression analysisGuanine nucleotide exchange factor activityNucleotide exchange factor activityGene expression regulationPI3K/PTEN/Akt pathwayExchange factor activityMelanoma developmentPTEN/AKT pathwayCell cycle regulatorsGene expression analysisExpression regulationGEF activityCytoskeleton organizationCDKN1C geneRegulatory regionsExpression analysisGene expressionCycle regulatorsDNA hypomethylationCell cycleChromosome 11Tumor suppressorBiological pathwaysMechanistic basisThe Cancer Genome Atlas Pan-Cancer analysis project
Chang K, Creighton C, Davis C, Donehower L, Drummond J, Wheeler D, Ally A, Balasundaram M, Birol I, Butterfield Y, Chu A, Chuah E, Chun H, Dhalla N, Guin R, Hirst M, Hirst C, Holt R, Jones S, Lee D, Li H, Marra M, Mayo M, Moore R, Mungall A, Robertson A, Schein J, Sipahimalani P, Tam A, Thiessen N, Varhol R, Beroukhim R, Bhatt A, Brooks A, Cherniack A, Freeman S, Gabriel S, Helman E, Jung J, Meyerson M, Ojesina A, Pedamallu C, Saksena G, Schumacher S, Tabak B, Zack T, Lander E, Bristow C, Hadjipanayis A, Haseley P, Kucherlapati R, Lee S, Lee E, Luquette L, Mahadeshwar H, Pantazi A, Parfenov M, Park P, Protopopov A, Ren X, Santoso N, Seidman J, Seth S, Song X, Tang J, Xi R, Xu A, Yang L, Zeng D, Auman J, Balu S, Buda E, Fan C, Hoadley K, Jones C, Meng S, Mieczkowski P, Parker J, Perou C, Roach J, Shi Y, Silva G, Tan D, Veluvolu U, Waring S, Wilkerson M, Wu J, Zhao W, Bodenheimer T, Hayes D, Hoyle A, Jeffreys S, Mose L, Simons J, Soloway M, Baylin S, Berman B, Bootwalla M, Danilova L, Herman J, Hinoue T, Laird P, Rhie S, Shen H, Triche T, Weisenberger D, Carter S, Cibulskis K, Chin L, Zhang J, Getz G, Sougnez C, Wang M, Saksena G, Carter S, Cibulskis K, Chin L, Zhang J, Getz G, Dinh H, Doddapaneni H, Gibbs R, Gunaratne P, Han Y, Kalra D, Kovar C, Lewis L, Morgan M, Morton D, Muzny D, Reid J, Xi L, Cho J, DiCara D, Frazer S, Gehlenborg N, Heiman D, Kim J, Lawrence M, Lin P, Liu Y, Noble M, Stojanov P, Voet D, Zhang H, Zou L, Stewart C, Bernard B, Bressler R, Eakin A, Iype L, Knijnenburg T, Kramer R, Kreisberg R, Leinonen K, Lin J, Liu Y, Miller M, Reynolds S, Rovira H, Shmulevich I, Thorsson V, Yang D, Zhang W, Amin S, Wu C, Wu C, Akbani R, Aldape K, Baggerly K, Broom B, Casasent T, Cleland J, Creighton C, Dodda D, Edgerton M, Han L, Herbrich S, Ju Z, Kim H, Lerner S, Li J, Liang H, Liu W, Lorenzi P, Lu Y, Melott J, Mills G, Nguyen L, Su X, Verhaak R, Wang W, Weinstein J, Wong A, Yang Y, Yao J, Yao R, Yoshihara K, Yuan Y, Yung A, Zhang N, Zheng S, Ryan M, Kane D, Aksoy B, Ciriello G, Dresdner G, Gao J, Gross B, Jacobsen A, Kahles A, Ladanyi M, Lee W, Lehmann K, Miller M, Ramirez R, Rätsch G, Reva B, Sander C, Schultz N, Senbabaoglu Y, Shen R, Sinha R, Sumer S, Sun Y, Taylor B, Weinhold N, Fei S, Spellman P, Benz C, Carlin D, Cline M, Craft B, Ellrott K, Goldman M, Haussler D, Ma S, Ng S, Paull E, Radenbaugh A, Salama S, Sokolov A, Stuart J, Swatloski T, Uzunangelov V, Waltman P, Yau C, Zhu J, Hamilton S, Getz G, Sougnez C, Abbott S, Abbott R, Dees N, Delehaunty K, Ding L, Dooling D, Eldred J, Fronick C, Fulton R, Fulton L, Kalicki-Veizer J, Kanchi K, Kandoth C, Koboldt D, Larson D, Ley T, Lin L, Lu C, Magrini V, Mardis E, McLellan M, McMichael J, Miller C, O'Laughlin M, Pohl C, Schmidt H, Smith S, Walker J, Wallis J, Wendl M, Wilson R, Wylie T, Zhang Q, Burton R, Jensen M, Kahn A, Pihl T, Pot D, Wan Y, Levine D, Black A, Bowen J, Frick J, Gastier-Foster J, Harper H, Helsel C, Leraas K, Lichtenberg T, McAllister C, Ramirez N, Sharpe S, Wise L, Zmuda E, Chanock S, Davidsen T, Demchok J, Eley G, Felau I, Ozenberger B, Sheth M, Sofia H, Staudt L, Tarnuzzer R, Wang Z, Yang L, Zhang J, Omberg L, Margolin A, Raphael B, Vandin F, Wu H, Leiserson M, Benz S, Vaske C, Noushmehr H, Knijnenburg T, Wolf D, Veer L, Collisson E, Anastassiou D, Yang T, Lopez-Bigas N, Gonzalez-Perez A, Tamborero D, Xia Z, Li W, Cho D, Przytycka T, Hamilton M, McGuire S, Nelander S, Johansson P, Jörnsten R, Kling T, Sanchez J. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 2013, 45: 1113-1120. PMID: 24071849, PMCID: PMC3919969, DOI: 10.1038/ng.2764.Peer-Reviewed Original ResearchIntegrating Gene and Mir Expression Profiles and Regulatory Network Structures to Define Aberrent Feed Forward Loops with Functional and Clinical Implications in Myeloma.
Fulciniti M, Li Y, Wang X, Samur M, Yan Z, Amin S, Li C, Anderson K, Munshi N. Integrating Gene and Mir Expression Profiles and Regulatory Network Structures to Define Aberrent Feed Forward Loops with Functional and Clinical Implications in Myeloma. Blood 2012, 120: 2386. DOI: 10.1182/blood.v120.21.2386.2386.Peer-Reviewed Original ResearchFeed-forward loopRegulatory network structureGene/sGene expressionExpression profilesMiR expression profilesGene expression profile analysisNormal plasma cellsLarge regulatory networkExpression profile analysisOncogenic effectsExpression profile dataMaster TFsNegative feedback regulationRegulatory networksOncogenomic analysisDifferential genesRegulatory loopMolecular impactHeterogeneous genetic backgroundMiRNA expressionFeedback regulationMiR profilesGenetic backgroundMalignant phenotypeGene expression profile alone is inadequate in predicting complete response in multiple myeloma
Amin S, Yip W, Minvielle S, Broyl A, Li Y, Hanlon B, Swanson D, Shah P, Moreau P, van der Holt B, van Duin M, Magrangeas F, Pieter Sonneveld P, Anderson K, Li C, Avet-Loiseau H, Munshi N. Gene expression profile alone is inadequate in predicting complete response in multiple myeloma. Leukemia 2014, 28: 2229-2234. PMID: 24732597, PMCID: PMC4198516, DOI: 10.1038/leu.2014.140.Peer-Reviewed Original Research
2024
DNAR-16. TARGETING APOBEC CYTIDINE DEAMINASES TO ENHANCE RADIOSENSITIVITY IN GLIOMA
Marin B, Gujar A, Kocakavuk E, Johnson K, Amin S, Verhaak R. DNAR-16. TARGETING APOBEC CYTIDINE DEAMINASES TO ENHANCE RADIOSENSITIVITY IN GLIOMA. Neuro-Oncology 2024, 26: viii120-viii121. PMCID: PMC11553289, DOI: 10.1093/neuonc/noae165.0467.Peer-Reviewed Original ResearchApolipoprotein B mRNA-editing enzyme catalytic polypeptide-likeRadiation therapyNon-homologous end joiningRecurrent gliomaDNA-dependent protein kinaseMutational signaturesRT-induced DNA damageMonitoring response to treatmentRadiosensitivity in vitroEnhanced radiosensitivity in vitroA3GPromote tumor evolutionResponse to treatmentAutophosphorylation of DNA-dependent protein kinaseAPOBEC mutational signaturesAdult brain tumorsPrimary adult brain tumorGlioma Longitudinal Analysis ConsortiumFamily of cytidine deaminasesRadiosensitizing gliomasAPOBEC3G (A3GNon-homologous end-joining pathwayPost-RTGlioma cell linesWhole-genome sequencing
2022
Glioma progression is shaped by genetic evolution and microenvironment interactions
Varn F, Johnson K, Martinek J, Huse J, Nasrallah M, Wesseling P, Cooper L, Malta T, Wade T, Sabedot T, Brat D, Gould P, Wöehrer A, Aldape K, Ismail A, Sivajothi S, Barthel F, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon H, Pollock S, Goldfarb C, Lee G, Garofano L, Anderson K, Nehar-Belaid D, Barnholtz-Sloan J, Bakas S, Byrne A, D’Angelo F, Gan H, Khasraw M, Migliozzi S, Ormond D, Paek S, Van Meir E, Walenkamp A, Watts C, Weiss T, Weller M, Palucka K, Stead L, Poisson L, Noushmehr H, Iavarone A, Verhaak R, Consortium T, Varn F, Johnson K, Martinek J, Huse J, Nasrallah M, Wesseling P, Cooper L, Malta T, Wade T, Sabedot T, Brat D, Gould P, Wöehrer A, Aldape K, Ismail A, Sivajothi S, Barthel F, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon H, Pollock S, Goldfarb C, Lee G, Garofano L, Anderson K, Nehar-Belaid D, Barnholtz-Sloan J, Bakas S, Byrne A, D’Angelo F, Gan H, Khasraw M, Migliozzi S, Ormond D, Paek S, Van Meir E, Walenkamp A, Watts C, Weiss T, Weller M, Alfaro K, Amin S, Ashley D, Bock C, Brodbelt A, Bulsara K, Castro A, Connelly J, Costello J, de Groot J, Finocchiaro G, French P, Golebiewska A, Hau A, Hong C, Horbinski C, Kannan K, Kouwenhoven M, Lasorella A, LaViolette P, Ligon K, Lowman A, Mehta S, Miletic H, Molinaro A, Ng H, Niclou S, Niers J, Phillips J, Rabadan R, Rao G, Reifenberger G, Sanai N, Short S, Smitt P, Sloan A, Smits M, Snyder J, Suzuki H, Tabatabai G, Tanner G, Tomaszewski W, Wells M, Westerman B, Wheeler H, Xie J, Yung W, Zadeh G, Zhao J, Palucka K, Stead L, Poisson L, Noushmehr H, Iavarone A, Verhaak R. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022, 185: 2184-2199.e16. PMID: 35649412, PMCID: PMC9189056, DOI: 10.1016/j.cell.2022.04.038.Peer-Reviewed Original ResearchConceptsSpecific ligand-receptor interactionsMicroenvironment interactionsDNA sequencing dataGlioma progressionLigand-receptor interactionsNeoplastic cellsSignaling programsCell statesSequencing dataGenetic evolutionGenetic changesIDH wild-type tumorsIsocitrate dehydrogenaseMesenchymal transitionSomatic alterationsDistinct mannerActive tumor growthIDH-mutant gliomasPotential targetTherapy resistanceAdult patientsDisease progressionPossible roleCellsTumor growthLive-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer
Yi E, Gujar A, Guthrie M, Kim H, Zhao D, Johnson K, Amin S, Costa M, Yu Q, Das S, Jillette N, Clow P, Cheng A, Verhaak R. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discovery 2022, 12: 468-483. PMID: 34819316, PMCID: PMC8831456, DOI: 10.1158/2159-8290.cd-21-1376.Peer-Reviewed Original ResearchConceptsExtrachromosomal DNA elementsDNA elementsUneven segregationRNA polymerase IILive-cell imagingPolymerase IIOffspring cellsGene transcriptionCell line modelsEcDNAsRandom segregationGenetic materialLiving cellsCopy numberLive cellsIndividual cellsTumor evolutionMitosisInheritance patternBreakpoint sequencesIssue featureTranscriptionFluorescent markersPatient tissuesCells
2021
Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy
Terranova C, Tang M, Maitituoheti M, Raman A, Ghosh A, Schulz J, Amin S, Orouji E, Tomczak K, Sarkar S, Oba J, Creasy C, Wu C, Khan S, Lazcano R, Wani K, Singh A, Barrodia P, Zhao D, Chen K, Haydu L, Wang W, Lazar A, Woodman S, Bernatchez C, Rai K. Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy. Cell Reports 2021, 36: 109410. PMID: 34289358, PMCID: PMC8369408, DOI: 10.1016/j.celrep.2021.109410.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell ProliferationChromatinEnhancer of Zeste Homolog 2 ProteinFemaleGTP PhosphohydrolasesHistonesHumansMelanocytesMelanomaMembrane ProteinsMesodermMice, NudeMitogen-Activated Protein Kinase KinasesMutationNeoplasm MetastasisPolycomb Repressive Complex 2Transcription, GeneticTumor BurdenConceptsHistone H3 lysine 27 trimethylationH3 lysine 27 trimethylationBivalent chromatin stateCell identity genesLysine 27 trimethylationKey epigenetic alterationsNRAS mutantsMaster transcription factorBivalent domainsChromatin statePRC2 inhibitionEpigenetic elementsTranscription factorsEpigenetic alterationsGenetic driversMesenchymal phenotypeNRAS-mutant melanomaState profilingTherapeutic vulnerabilitiesInvasive capacityPharmacological inhibitionMutantsTherapeutic strategiesMelanoma samplesMutant melanoma patientsRadiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer
Kocakavuk E, Anderson K, Varn F, Johnson K, Amin S, Sulman E, Lolkema M, Barthel F, Verhaak R. Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nature Genetics 2021, 53: 1088-1096. PMID: 34045764, PMCID: PMC8483261, DOI: 10.1038/s41588-021-00874-3.Peer-Reviewed Original ResearchConceptsWorse clinical outcomesNon-irradiated tumorsClinical outcomesRecurrent cancerPatient survivalPoor outcomeMetastatic tumorsRecurrent gliomaRadiation therapyRadiation-induced DNA damageDNA damageGlioma Longitudinal Analysis ConsortiumMutational signature analysisCancer treatmentDeletion burdenRadiotherapyMedical FoundationAPOBEC mutagenesisSignificant increaseTumorsCancerDNA damage repairDeletion signatureMutational spectrumSmall deletions
2020
Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure
Akdemir K, Le V, Kim J, Killcoyne S, King D, Lin Y, Tian Y, Inoue A, Amin S, Robinson F, Nimmakayalu M, Herrera R, Lynn E, Chan K, Seth S, Klimczak L, Gerstung M, Gordenin D, O’Brien J, Li L, Deribe Y, Verhaak R, Campbell P, Fitzgerald R, Morrison A, Dixon J, Andrew Futreal P. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nature Genetics 2020, 52: 1178-1188. PMID: 33020667, PMCID: PMC8350746, DOI: 10.1038/s41588-020-0708-0.Peer-Reviewed Original ResearchConceptsCancer genomesMutational processesGenome organizationThree-dimensional genome organizationThree-dimensional chromatin structureSomatic mutationsSpatial genome organizationMutation rate variationDifferent human cancer typesDifferent mutational processesWhole-genome datasetsActive mutational processesSpecific mutational processesChromatin structureHuman cancer typesMutation distributionInactive domainsDevelopment of cancerDriver genesGenomeMutational loadActive domainHuman cancersMutationsNovel therapeutic strategiesEnhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma
Maitituoheti M, Keung E, Tang M, Yan L, Alam H, Han G, Singh A, Raman A, Terranova C, Sarkar S, Orouji E, Amin S, Sharma S, Williams M, Samant N, Dhamdhere M, Zheng N, Shah T, Shah A, Axelrad J, Anvar N, Lin Y, Jiang S, Chang E, Ingram D, Wang W, Lazar A, Lee M, Muller F, Wang L, Ying H, Rai K. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Reports 2020, 33: 108293. PMID: 33086062, PMCID: PMC7649750, DOI: 10.1016/j.celrep.2020.108293.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCell Line, TumorDNA-Binding ProteinsFemaleGenes, Tumor SuppressorGlucoseGlycolysisHistone MethyltransferasesHistone-Lysine N-MethyltransferaseHumansInsulinIntercellular Signaling Peptides and ProteinsMaleMelanomaMiceMice, Inbred C57BLMice, NudeMyeloid-Lymphoid Leukemia ProteinNeoplasm ProteinsReceptor, IGF Type 1Regulatory Sequences, Nucleic AcidSignal TransductionXenograft Model Antitumor AssaysConceptsKMT2D-deficient cellsInsulin growth factorEnhancer reprogrammingIGF1R-AktMelanocyte-specific deletionMutant melanomaMouse modelTumor typesTherapeutic interventionsPharmacological inhibitionPathway inhibitorPotent tumor suppressorIGF signalingGrowth factorMelanomaPooled RNAi screensSomatic point mutationsTumor suppressorKey metabolic pathwaysFrequent lossGlycolysisGlycolysis enzymesTumorigenesisGlycolysis pathwayMetabolic pathwaysExtrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers
Kim H, Nguyen N, Turner K, Wu S, Gujar A, Luebeck J, Liu J, Deshpande V, Rajkumar U, Namburi S, Amin S, Yi E, Menghi F, Schulte J, Henssen A, Chang H, Beck C, Mischel P, Bafna V, Verhaak R. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics 2020, 52: 891-897. PMID: 32807987, PMCID: PMC7484012, DOI: 10.1038/s41588-020-0678-2.Peer-Reviewed Original ResearchConceptsOncogene amplificationPoor outcomeCancer typesEcDNA amplificationShorter survivalCancer patientsMost cancer typesExtrachromosomal DNA amplificationsClinical impactMultiple cancersPatientsNormal tissuesCancerTranscript fusionsEnhanced chromatin accessibilityIntratumoral genetic heterogeneityOncogene transcriptionChromosomal amplificationOutcomesGenetic heterogeneityHigh levelsDNA amplificationTissue typesBloodKMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer
Alam H, Tang M, Maitituoheti M, Dhar S, Kumar M, Han C, Ambati C, Amin S, Gu B, Chen T, Lin Y, Chen J, Muller F, Putluri N, Flores E, DeMayo F, Baseler L, Rai K, Lee M. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell 2020, 37: 599-617.e7. PMID: 32243837, PMCID: PMC7178078, DOI: 10.1016/j.ccell.2020.03.005.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinoma of LungAnimalsAntimetabolitesApoptosisBiomarkers, TumorCell ProliferationDeoxyglucoseDNA-Binding ProteinsEnhancer Elements, GeneticGene Expression Regulation, NeoplasticGlycolysisHistone-Lysine N-MethyltransferaseHistonesHumansLung NeoplasmsMiceMice, KnockoutMice, NudeMutationMyeloid-Lymphoid Leukemia ProteinNeoplasm ProteinsPeriod Circadian ProteinsPrognosisTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsLung cancerLung-specific lossHuman lung cancer cellsExpression of Per2Lung cancer cellsHistone methyltransferase KMT2DLung tumor suppressorTumor suppressive roleMultiple glycolytic genesLung tumorigenesisEpigenetic modifiersPharmacological inhibitionTherapeutic vulnerabilitiesGlycolytic inhibitorCancerCancer cellsKMT2DFunction mutationsTumor suppressorPer2GlycolysisGlycolytic genesMutationsMiceMolecular and clonal evolution in recurrent metastatic gliosarcoma
Anderson K, Tan A, Parkinson J, Back M, Kastelan M, Newey A, Brewer J, Wheeler H, Hudson A, Amin S, Johnson K, Barthel F, Verhaak R, Khasraw M. Molecular and clonal evolution in recurrent metastatic gliosarcoma. Molecular Case Studies 2020, 6: a004671. PMID: 31896544, PMCID: PMC6996521, DOI: 10.1101/mcs.a004671.Peer-Reviewed Original ResearchConceptsFirst recurrenceExtracranial metastasesIntracranial tumorsFrontal lobeRight iliac boneLeft frontal lobeOrigin of metastasesFrontal recurrenceMetastatic gliosarcomaConcurrent radiotherapyFurther surgeryFurther recurrenceRecurrent tumorsMetastatic tumorsIliac boneMetastasisRecurrenceTumorsMesenchymal typeSurgeryClonal relationshipRadiotherapyGliosarcomaMolecular profilePelvic bones
2019
Longitudinal molecular trajectories of diffuse glioma in adults
Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E, Anderson KJ, Abiola O, Aldape K, Alfaro KD, Alpar D, Amin SB, Ashley DM, Bandopadhayay P, Barnholtz-Sloan JS, Beroukhim R, Bock C, Brastianos PK, Brat DJ, Brodbelt AR, Bruns AF, Bulsara KR, Chakrabarty A, Chakravarti A, Chuang JH, Claus EB, Cochran EJ, Connelly J, Costello JF, Finocchiaro G, Fletcher MN, French PJ, Gan HK, Gilbert MR, Gould PV, Grimmer MR, Iavarone A, Ismail A, Jenkinson MD, Khasraw M, Kim H, Kouwenhoven MCM, LaViolette PS, Li M, Lichter P, Ligon KL, Lowman AK, Malta TM, Mazor T, McDonald KL, Molinaro AM, Nam DH, Nayyar N, Ng HK, Ngan CY, Niclou SP, Niers JM, Noushmehr H, Noorbakhsh J, Ormond DR, Park CK, Poisson LM, Rabadan R, Radlwimmer B, Rao G, Reifenberger G, Sa JK, Schuster M, Shaw BL, Short SC, Smitt PAS, Sloan AE, Smits M, Suzuki H, Tabatabai G, Van Meir EG, Watts C, Weller M, Wesseling P, Westerman BA, Widhalm G, Woehrer A, Yung WKA, Zadeh G, Huse JT, De Groot JF, Stead LF, Verhaak RGW. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576: 112-120. PMID: 31748746, PMCID: PMC6897368, DOI: 10.1038/s41586-019-1775-1.Peer-Reviewed Original ResearchConceptsAdult patientsDiffuse gliomasRecurrent gliomaOverall survivalPoor outcomeCurrent therapiesChromosome arms 1p/19qAcquired alterationsMajor subtypesTherapeutic resistanceGliomasGlioma developmentGene alterationsIDH mutationsGlioma subtypesPatientsHypermutator phenotypeDriver genesSubtypesClinical annotationSurvivalSubclonal selectionCell cycleAlterationsLittle evidenceThe effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma
Adamia S, Abiatari I, Amin S, Fulciniti M, Minvielle S, Li C, Moreau P, Avet-Loiseau H, Munshi N, Anderson K. The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia 2019, 34: 167-179. PMID: 31182781, PMCID: PMC6901818, DOI: 10.1038/s41375-019-0498-5.Peer-Reviewed Original ResearchConceptsMultiple myelomaPlasma cellsOvert multiple myelomaPatient outcomesMM cellsMM pathogenesisLet-7fMicroRNA deregulationRegulation of microRNAsCD138Certain miRsMyelomaMiRDependent gene expressionDeregulated expressionMiR-mediated regulationSignificant numberEpigenetic lesionsTarget genesMM genomesExpressionGene expressionEarly stagesCellsPatientsp53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors
Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, Tepper J, Chen Z, Lovisa S, Svelto M, Amin S, Srinivasan S, Del Poggetto E, Loponte S, Puca F, Dey P, Malouf G, Su X, Li L, Lopez-Terrada D, Rakheja D, Lazar A, Netto G, Rao P, Sgambato A, Maitra A, Tripathi D, Walker C, Karam J, Heffernan T, Viale A, Roberts C, Msaouel P, Tannir N, Draetta G, Genovese G. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell 2019, 35: 204-220.e9. PMID: 30753823, PMCID: PMC7876656, DOI: 10.1016/j.ccell.2019.01.006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsAutophagyCell Line, TumorCyclin-Dependent Kinase Inhibitor p16Endoplasmic Reticulum StressFemaleGene Expression Regulation, NeoplasticHumansMaleMice, 129 StrainMice, Inbred C57BLMice, KnockoutProteasome InhibitorsProteostasisProto-Oncogene Proteins c-mycRhabdoid TumorSignal TransductionSMARCB1 ProteinTumor Cells, CulturedTumor Suppressor Protein p53Unfolded Protein ResponseConceptsMalignant rhabdoid tumorRhabdoid tumorUnfolded protein responseClinical pathological featuresAggressive pediatric malignancyCombination of agentsPediatric malignanciesMouse modelP53 axisMosaic mouse modelChromatin remodeling genesER stress responseTumorsHuman oncogenesisBiallelic inactivationMalignancyProtein responseDramatic activationHuman diseasesMaster regulatorExquisite sensitivityAutophagic machineryAgentsDiseaseStress response