Featured Publications
Comparative Molecular Life History of Spontaneous Canine and Human Gliomas
Amin S, Anderson K, Boudreau C, Martinez-Ledesma E, Kocakavuk E, Johnson K, Barthel F, Varn F, Kassab C, Ling X, Kim H, Barter M, Lau C, Ngan C, Chapman M, Koehler J, Long J, Miller A, Miller C, Porter B, Rissi D, Mazcko C, LeBlanc A, Dickinson P, Packer R, Taylor A, Rossmeisl J, Woolard K, Heimberger A, Levine J, Verhaak R. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell 2020, 37: 243-257.e7. PMID: 32049048, PMCID: PMC7132629, DOI: 10.1016/j.ccell.2020.01.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain NeoplasmsDNA MethylationDogsExomeGliomaHumansIsocitrate DehydrogenaseMutationTumor Suppressor Protein p53ConceptsComparative genomic analysisDNA methylation patternsReceptor tyrosine kinasesCell cycle pathwayGenomic analysisMethylation sequencingLife historyMutational processesTyrosine kinaseHigh similarityHuman gliomasTumorigenic mechanismsHost environmentMutational rateSomatic alterationsSporadic gliomasIDH1 R132Canine gliomasMolecular profileGlioma etiologyHuman pediatricPediatric gliomasTranscriptomeKinaseUnique insights
2022
Glioma progression is shaped by genetic evolution and microenvironment interactions
Varn F, Johnson K, Martinek J, Huse J, Nasrallah M, Wesseling P, Cooper L, Malta T, Wade T, Sabedot T, Brat D, Gould P, Wöehrer A, Aldape K, Ismail A, Sivajothi S, Barthel F, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon H, Pollock S, Goldfarb C, Lee G, Garofano L, Anderson K, Nehar-Belaid D, Barnholtz-Sloan J, Bakas S, Byrne A, D’Angelo F, Gan H, Khasraw M, Migliozzi S, Ormond D, Paek S, Van Meir E, Walenkamp A, Watts C, Weiss T, Weller M, Palucka K, Stead L, Poisson L, Noushmehr H, Iavarone A, Verhaak R, Consortium T, Varn F, Johnson K, Martinek J, Huse J, Nasrallah M, Wesseling P, Cooper L, Malta T, Wade T, Sabedot T, Brat D, Gould P, Wöehrer A, Aldape K, Ismail A, Sivajothi S, Barthel F, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon H, Pollock S, Goldfarb C, Lee G, Garofano L, Anderson K, Nehar-Belaid D, Barnholtz-Sloan J, Bakas S, Byrne A, D’Angelo F, Gan H, Khasraw M, Migliozzi S, Ormond D, Paek S, Van Meir E, Walenkamp A, Watts C, Weiss T, Weller M, Alfaro K, Amin S, Ashley D, Bock C, Brodbelt A, Bulsara K, Castro A, Connelly J, Costello J, de Groot J, Finocchiaro G, French P, Golebiewska A, Hau A, Hong C, Horbinski C, Kannan K, Kouwenhoven M, Lasorella A, LaViolette P, Ligon K, Lowman A, Mehta S, Miletic H, Molinaro A, Ng H, Niclou S, Niers J, Phillips J, Rabadan R, Rao G, Reifenberger G, Sanai N, Short S, Smitt P, Sloan A, Smits M, Snyder J, Suzuki H, Tabatabai G, Tanner G, Tomaszewski W, Wells M, Westerman B, Wheeler H, Xie J, Yung W, Zadeh G, Zhao J, Palucka K, Stead L, Poisson L, Noushmehr H, Iavarone A, Verhaak R. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022, 185: 2184-2199.e16. PMID: 35649412, PMCID: PMC9189056, DOI: 10.1016/j.cell.2022.04.038.Peer-Reviewed Original ResearchConceptsSpecific ligand-receptor interactionsMicroenvironment interactionsDNA sequencing dataGlioma progressionLigand-receptor interactionsNeoplastic cellsSignaling programsCell statesSequencing dataGenetic evolutionGenetic changesIDH wild-type tumorsIsocitrate dehydrogenaseMesenchymal transitionSomatic alterationsDistinct mannerActive tumor growthIDH-mutant gliomasPotential targetTherapy resistanceAdult patientsDisease progressionPossible roleCellsTumor growth
2018
Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium
Aldape K, Amin SB, Ashley DM, Barnholtz-Sloan JS, Bates AJ, Beroukhim R, Bock C, Brat DJ, Claus EB, Costello JF, de Groot JF, Finocchiaro G, French PJ, Gan HK, Griffith B, Herold-Mende CC, Horbinski C, Iavarone A, Kalkanis SN, Karabatsou K, Kim H, Kouwenhoven MCM, McDonald KL, Miletic H, Nam DH, Ng HK, Niclou SP, Noushmehr H, Ormond D, Poisson LM, Reifenberger G, Roncaroli F, K J, Smitt P, Smits M, Souza CF, Tabatabai G, Van Meir EG, Verhaak RGW, Watts C, Wesseling P, Woehrer A, Yung WKA, Jungk C, Hau AC, van Dyck E, Westerman BA, Yin J, Abiola O, Zeps N, Grimmond S, Buckland M, Khasraw M, Sulman EP, Muscat AM, Stead L. Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology 2018, 20: 873-884. PMID: 29432615, PMCID: PMC6280138, DOI: 10.1093/neuonc/noy020.Peer-Reviewed Original ResearchConceptsGlioma Longitudinal Analysis ConsortiumMolecular evolutionAnalysis ConsortiumEvolution of gliomasLethal phenotypeCancer Genome AtlasEpigenetic abnormalitiesTargetable vulnerabilitiesGenome AtlasSomatic alterationsDiverse groupCurrent knowledgeAdult diffuse gliomasComprehensive understandingDiffuse gliomasKnowledge gapsEssential insightsEvolutionMolecular subtypesConsortiumPhenotype
2016
miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis
Xue J, Zhou A, Wu Y, Morris S, Lin K, Amin S, Verhaak R, Fuller G, Xie K, Heimberger A, Huang S. miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis. Cancer Research 2016, 76: 4293-4304. PMID: 27246830, PMCID: PMC5033679, DOI: 10.1158/0008-5472.can-15-3073.Peer-Reviewed Original ResearchConceptsProtocadherin-8Glioma tumorigenesisProtein-coding genesMiRNA gene transcriptionCandidate target genesExpression of STAT3Gene transcriptionBioinformatics analysisTarget genesSTAT3/miRSTAT3 knockdownPCDH8 expressionSTAT3 inhibitorAberrant activationGlioblastoma tissuesSTAT3Expression levelsInvasive capacityTranscriptionTumorigenesisGlioma progressionGenesCritical roleKnockdownP-STAT3