2024
Biometric contrastive learning for data-efficient deep learning from electrocardiographic images
Sangha V, Khunte A, Holste G, Mortazavi B, Wang Z, Oikonomou E, Khera R. Biometric contrastive learning for data-efficient deep learning from electrocardiographic images. Journal Of The American Medical Informatics Association 2024, 31: 855-865. PMID: 38269618, PMCID: PMC10990541, DOI: 10.1093/jamia/ocae002.Peer-Reviewed Original ResearchLabeled training dataContrastive learningECG imagesLabeled dataTraining dataDeep learningProportions of labeled dataArtificial intelligenceSelf-supervised contrastive learningTraditional supervised learningConvolutional neural networkHeld-out test setSupervised learningPretraining strategyBiometric signatureImageNet initializationPretraining approachNeural networkImageNetAI modelsImage objectsTest setLearningDetect atrial fibrillationEquivalent performance
2022
Automated multilabel diagnosis on electrocardiographic images and signals
Sangha V, Mortazavi BJ, Haimovich AD, Ribeiro AH, Brandt CA, Jacoby DL, Schulz WL, Krumholz HM, Ribeiro ALP, Khera R. Automated multilabel diagnosis on electrocardiographic images and signals. Nature Communications 2022, 13: 1583. PMID: 35332137, PMCID: PMC8948243, DOI: 10.1038/s41467-022-29153-3.Peer-Reviewed Original ResearchConceptsConvolutional neural networkArtificial intelligenceApplication of AISignal-based dataSignal-based modelElectrocardiographic imagesECG imagesGrad-CAMImage-based modelsNeural networkDiagnosis modelECG signalsImagesClinical labelsValidation setLabelsExternal validation setMultilabelIntelligenceNetworkApplicationsModelBroad useSetBroader setting
2021
Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction
Khera R, Haimovich J, Hurley NC, McNamara R, Spertus JA, Desai N, Rumsfeld JS, Masoudi FA, Huang C, Normand SL, Mortazavi BJ, Krumholz HM. Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiology 2021, 6: 633-641. PMID: 33688915, PMCID: PMC7948114, DOI: 10.1001/jamacardio.2021.0122.Peer-Reviewed Original ResearchConceptsMachine learning modelsMeta-classifier modelLearning modelNeural networkGradient descent boostingAcute myocardial infarctionContemporary machineGradient descentXGBoost modelXGBoostHospital mortalityCohort studyLogistic regressionMyocardial infarctionNetworkChest Pain-MI RegistryPrecise classificationIndependent validation dataInitial laboratory valuesNovel methodLarge national registryHigh-risk individualsData analysisValidation dataResolution of risk