2017
Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity
Cao J, Peng J, An H, He Q, Boronina T, Guo S, White M, Cole P, He L. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications 2017, 8: 131. PMID: 28743992, PMCID: PMC5526866, DOI: 10.1038/s41467-017-00163-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorE1A-Associated p300 ProteinEndoplasmic Reticulum StressEndotoxemiaGene Expression ProfilingImmunoblottingInsulinInsulin ResistanceLipopolysaccharidesLiverMaleMembrane ProteinsMice, Inbred C57BLMice, ObeseObesityProtein Serine-Threonine KinasesReceptor, InsulinSignal TransductionX-Box Binding Protein 1ConceptsInsulin resistanceP300 acetyltransferase activityHigh-fat diet-fedChronic low-grade inflammationObese ob/ob miceOb/ob miceLow-grade inflammationDiet-induced obesityAcetyltransferase activityElevated plasma concentrationsPromising therapeutic targetCytoplasm of hepatocytesEndoplasmic reticulum stressObese patientsObese miceInsulin sensitivityIntestinal permeabilityOb micePlasma concentrationsDisrupts insulinTherapeutic targetImpairs insulinPharmacological inhibitionGlucose productionObesity
2014
Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*
Hançer N, Qiu W, Cherella C, Li Y, Copps K, White M. Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*. Journal Of Biological Chemistry 2014, 289: 12467-12484. PMID: 24652289, PMCID: PMC4007441, DOI: 10.1074/jbc.m114.554162.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinAntigens, CDBlotting, WesternCHO CellsCricetinaeCricetulusEnzyme InhibitorsHumansHypoglycemic AgentsInsulinInsulin Receptor Substrate ProteinsPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene Proteins c-aktRatsReceptor, InsulinRibosomal Protein S6 Kinases, 70-kDaSerineSignal TransductionThapsigarginThreonineTOR Serine-Threonine KinasesTunicamycinTyrosineConceptsTyrosine phosphorylationPhospho-specific monoclonal antibodiesSerine/threonine phosphorylationInsulin receptor tyrosine kinasePI3KInsulin receptor substrate-1Insulin-stimulated cellsHuman insulin receptorIRS1 tyrosine phosphorylationReceptor substrate-1Metabolic stressReceptor tyrosine kinasesThreonine phosphorylationThreonine residuesS6 kinasePI3K inhibitionSubstrate-1Mechanistic targetTyrosine kinaseInsulin stimulationMEK pathwayKey substrateInsulin receptorPresence of inhibitorsCHO cells
2013
Genetic Inactivation of Pyruvate Dehydrogenase Kinases Improves Hepatic Insulin Resistance Induced Diabetes
Tao R, Xiong X, Harris R, White M, Dong X. Genetic Inactivation of Pyruvate Dehydrogenase Kinases Improves Hepatic Insulin Resistance Induced Diabetes. PLOS ONE 2013, 8: e71997. PMID: 23940800, PMCID: PMC3733847, DOI: 10.1371/journal.pone.0071997.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDiabetes Mellitus, ExperimentalGene Expression Regulation, EnzymologicGene SilencingGlucose IntoleranceGlucose Tolerance TestInsulin Receptor Substrate ProteinsInsulin ResistanceLiverMiceMice, KnockoutOrgan SpecificityProtein Serine-Threonine KinasesPyruvate Dehydrogenase Acetyl-Transferring KinaseConceptsPyruvate dehydrogenase kinasePDK4 geneGene knockdownDehydrogenase kinasePDK4 gene expressionMitochondrial pyruvate dehydrogenasePdk geneGene attributesPDK2 genesGene inactivationGene expressionGenetic inactivationPyruvate dehydrogenaseGenesInsulin receptorMetabolic analysisSpecific shRNAGene deletionGenetic backgroundHepatic insulin receptorNull miceKinasePDK2KnockdownCritical role
2005
Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. Journal Of Clinical Investigation 2005, 115: 3587-3593. PMID: 16284649, PMCID: PMC1280967, DOI: 10.1172/jci25151.Peer-Reviewed Original ResearchMeSH KeywordsBiopsyBlood GlucoseBlotting, WesternBody Mass IndexBody WeightDiabetes Mellitus, Type 2DNA, MitochondrialFamily HealthFemaleGene Expression RegulationGlucose Clamp TechniqueGlucose Tolerance TestHumansHyperinsulinismImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipidsMaleMicroscopy, ElectronMicroscopy, Electron, TransmissionMitochondriaMusclesPhosphoproteinsPhosphorylationProtein Serine-Threonine KinasesReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSerineSignal TransductionTime FactorsTranscription, GeneticTriglyceridesConceptsInsulin-resistant offspringIR offspringType 2 diabetesInsulin-stimulated muscle glucose uptakeType 2 diabetic parentsIntramyocellular lipid contentHyperinsulinemic-euglycemic clampMuscle glucose uptakeIRS-1 serine phosphorylationMuscle mitochondrial densityMitochondrial densityMuscle biopsy samplesSerine kinase cascadeInsulin-stimulated Akt activationDiabetic parentsInsulin resistanceControl subjectsBiopsy samplesGlucose uptakeLipid accumulationMitochondrial dysfunctionInsulin signalingAkt activationEarly defectsMuscleMolecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: Role of IRS phosphorylation
Zhang Q, Carter E, Ma B, White M, Fischman A, Tompkins R. Molecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: Role of IRS phosphorylation. Life Sciences 2005, 77: 3068-3077. PMID: 15982669, DOI: 10.1016/j.lfs.2005.02.034.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBurnsDisease Models, AnimalEnzyme ActivationHindlimbInsulin Receptor Substrate ProteinsInsulin ResistanceJNK Mitogen-Activated Protein KinasesMaleMAP Kinase Kinase 4MiceMitogen-Activated Protein Kinase KinasesMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionConceptsInsulin receptor substrate-1Burn-induced insulin resistanceAkt kinase activityIRS-1 proteinSAPK/JNKSerine 307Kinase activitySkeletal muscleReceptor substrate-1Murine skeletal muscleHind limb skeletal muscleStress kinasesKey proteinsSubstrate-1Biochemical basisPhosphorylationIRS phosphorylationKinase enzymeProteinEnzyme activityJNKLimb skeletal muscleProtein contentInsulin resistanceKinaseInsulin Receptor Substrate 2 Is Essential for Maturation and Survival of Photoreceptor Cells
Yi X, Schubert M, Peachey N, Suzuma K, Burks D, Kushner J, Suzuma I, Cahill C, Flint C, Dow M, Leshan R, King G, White M. Insulin Receptor Substrate 2 Is Essential for Maturation and Survival of Photoreceptor Cells. Journal Of Neuroscience 2005, 25: 1240-1248. PMID: 15689562, PMCID: PMC6725974, DOI: 10.1523/jneurosci.3664-04.2005.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAnimals, NewbornApoptosisCell SurvivalDiabetic RetinopathyEye ProteinsGene DeletionHomeodomain ProteinsHyperglycemiaHyperinsulinismInsulin Receptor Substrate ProteinsInsulin ResistanceInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsMiceMice, KnockoutPhosphoproteinsPhosphorylationPhotic StimulationPhotoreceptor CellsProtein Processing, Post-TranslationalProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRetinal Ganglion CellsSignal TransductionTrans-ActivatorsConceptsIrs2-/- micePhotoreceptor cellsPlexiform layerInsulin receptor substrate 2Insulin receptor substrateInsulin-like growth factor 1 receptorGrowth factor 1 receptorMost photoreceptor cellsInner plexiform layerOuter plexiform layerFactor 1 receptorFinal common pathwaySurvival of photoreceptorsNormal electrical functionMonths of ageWeeks of ageReceptor substrateCellular growthSubstrate 2Akt phosphorylationGanglion cellsIRS2 expressionPharmacological strategiesControl littermatesPhotoreceptor degenerationDeletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice
Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H, Kido Y, Hayashi Y, Nakayama K, White M, Kasuga M. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nature Medicine 2005, 11: 175-182. PMID: 15685168, DOI: 10.1038/nm1187.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell NucleusCyclin-Dependent Kinase Inhibitor p27Diabetes Mellitus, Type 2Disease Models, AnimalEnzyme InhibitorsHyperglycemiaHyperinsulinismInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansLeptinMiceMice, KnockoutPhosphoproteinsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptors, Cell SurfaceReceptors, LeptinSignal TransductionTumor Suppressor ProteinsConceptsCyclin-dependent kinasesInsulin receptor substrate 2Cell cycle progressionPancreatic beta cell proliferationPotential new targetsCompensatory hyperinsulinemiaCycle progressionProtein p27Kip1Substrate 2Type 2 diabetes mellitusPancreatic beta cellsP27Kip1Beta-cell failureBeta-cell proliferationType 2 diabetesLong formNew targetsDeletionDiabetes mellitusDiabetic miceIslet massLeptin receptorBeta cellsAnimal modelsMice
2004
IRS‐2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes
Valverde A, Fabregat I, Burks D, White M, Benito M. IRS‐2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes. Hepatology 2004, 40: 1285-1294. PMID: 15565601, DOI: 10.1002/hep.20485.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornApoptosisApoptosis Regulatory ProteinsBcl-2-Like Protein 11Bcl-X ProteinBlood ProteinsCarrier ProteinsEpidermal Growth FactorFemaleForkhead Box Protein O1Forkhead Transcription FactorsGene ExpressionHepatocytesHypoglycemic AgentsInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsMaleMembrane ProteinsMiceMice, Mutant StrainsPhosphatidylinositol 3-KinasesPhosphoproteinsPregnancyProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktProto-Oncogene Proteins c-bcl-2Signal TransductionTranscription FactorsConceptsCaspase-3 activityIRS-2Caspase-3 activationGene expressionWild-type hepatocytesDominant negative FoxO1Wild-type cellsSerum withdrawal-induced apoptosisInsulin receptor substrateWithdrawal-induced apoptosisAnti-apoptotic gene expressionImmortalized hepatocyte cell linesIRS-2 signalingPIP3 generationProapoptotic gene expressionAntiapoptotic gene expressionProlonged insulin treatmentEpidermal growth factorActive FoxO1Receptor substrateNeonatal hepatocytesProapoptotic genesAntiapoptotic genesCaspase-8Serum withdrawalDisruption of the SH2-B Gene Causes Age-Dependent Insulin Resistance and Glucose Intolerance
Duan C, Yang H, White M, Rui L. Disruption of the SH2-B Gene Causes Age-Dependent Insulin Resistance and Glucose Intolerance. Molecular And Cellular Biology 2004, 24: 7435-7443. PMID: 15314154, PMCID: PMC506995, DOI: 10.1128/mcb.24.17.7435-7443.2004.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdipose TissueAgingAnimalsBlood GlucoseCarrier ProteinsCell LineDietary FatsGlucose IntoleranceHomeostasisHumansInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansLiverMaleMiceMice, Inbred StrainsMice, KnockoutMitogen-Activated Protein KinasesMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionConceptsSrc homology 2Insulin receptor substrate-1Insulin receptor activationInsulin receptorTyrosine phosphorylationSH2 domain-dependent mannerPleckstrin homology domain-containing adaptor proteinDomain-containing adaptor proteinDomain-dependent mannerReceptor substrate-1Skeletal muscleSH2 domainHomology 2Adaptor proteinReceptor activationSubstrate-1Physiological roleCultured cellsGlucose homeostasisERK1/2 pathwayDependent insulin resistancePhysiological enhancerSystemic deletionPhosphorylationIRS2
2003
Molecular Mechanisms of Insulin Resistance in IRS-2-Deficient Hepatocytes
Valverde A, Burks D, Fabregat I, Fisher T, Carretero J, White M, Benito M. Molecular Mechanisms of Insulin Resistance in IRS-2-Deficient Hepatocytes. Diabetes 2003, 52: 2239-2248. PMID: 12941762, DOI: 10.2337/diabetes.52.9.2239.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsAnimals, NewbornAntigens, Polyomavirus TransformingCell Line, TransformedFemaleForkhead Box Protein O1Forkhead Transcription FactorsGluconeogenesisGlucose-6-PhosphataseGlycogen SynthaseGlycogen Synthase Kinase 3HepatocytesHypoglycemic AgentsInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIsoenzymesMaleMiceMice, Mutant StrainsPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphoenolpyruvate Carboxykinase (GTP)PhosphoproteinsPregnancyProtein Kinase CProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRetroviridaeSignal TransductionTranscription FactorsConceptsGluconeogenic gene expressionIRS-2Gene expressionPrimary hepatocytesAtypical protein kinase CIRS-1-associated phosphatidylinositolIRS-1 tyrosine phosphorylationInsulin-induced phosphatidylinositolTranslocation of phosphatidylinositolInsulin receptor substrateGlycogen synthase kinaseProtein kinase CActivation of AktDownstream phosphatidylinositolTyrosine phosphorylationPlasma membraneReceptor substrateGlycogen synthase activityMolecular mechanismsSynthase kinaseInsulin stimulationKinase CHepatocyte cell linePhosphatidylinositolFunctional insulincAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2
Jhala U, Canettieri G, Screaton R, Kulkarni R, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes & Development 2003, 17: 1575-1580. PMID: 12842910, PMCID: PMC196130, DOI: 10.1101/gad.1097103.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell LineCell SurvivalColforsinCyclic AMPCyclic AMP Response Element-Binding ProteinDiabetes MellitusGene Expression RegulationGlucagonGlucagon-Like Peptide 1GlucoseGlucose IntoleranceHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansMiceMice, TransgenicPeptide FragmentsPhosphoproteinsPhosphorylationPromoter Regions, GeneticProtein PrecursorsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionTransfectionTransgenesTumor Cells, CulturedConceptsPancreatic β-cell survivalActivity of CREBSecond messenger cAMPSurvival kinase AktΒ-cell survivalKinase AktPathway componentsA-CREBCREB actionExpression of IRS2Cell survivalBeta-cell apoptosisDirect targetIslet cell survivalNovel mechanismCREBIRS2ExpressionCAMPInductionTransgeneAktIGF-1ApoptosisSurvival
2001
Regulation of Insulin/Insulin-like Growth Factor-1 Signaling by Proteasome-mediated Degradation of Insulin Receptor Substrate-2*
Rui L, Fisher T, Thomas J, White M. Regulation of Insulin/Insulin-like Growth Factor-1 Signaling by Proteasome-mediated Degradation of Insulin Receptor Substrate-2*. Journal Of Biological Chemistry 2001, 276: 40362-40367. PMID: 11546773, DOI: 10.1074/jbc.m105332200.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsCarcinoma, HepatocellularDiabetes Mellitus, Type 2Down-RegulationFeedbackFibroblastsHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsLiver Neoplasms, ExperimentalMiceMitogen-Activated Protein KinasesOsmotic PressurePeptide HydrolasesPhosphatidylinositol 3-KinasesPhosphoproteinsProteasome Endopeptidase ComplexProtein KinasesProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionTOR Serine-Threonine KinasesTumor Cells, CulturedUbiquitinConceptsInsulin-like growth factor-1Insulin/IGFMouse embryo fibroblastsProteasome-mediated degradationIRS-2Embryo fibroblastsInsulin/insulin-like growth factor-1 signalingInsulin receptor substrate (IRS) proteinsUbiquitin/proteasome-mediated degradationNovel negative feedback mechanismInsulin-like growth factor-1 signalingInsulin receptor substrate 2Inhibitor of phosphatidylinositolIRS-1 activationPeripheral insulin actionIGF-1 treatmentReceptor tyrosine kinasesHomologous receptor tyrosine kinasesGrowth factor-1IRS proteinsSubstrate proteinsBeta-cell survivalOsmotic stressTyrosine kinaseIRS-1Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways
Rui L, Aguirre V, Kim J, Shulman G, Lee A, Corbould A, Dunaif A, White M. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. Journal Of Clinical Investigation 2001, 107: 181-189. PMID: 11160134, PMCID: PMC199174, DOI: 10.1172/jci10934.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinCHO CellsCricetinaeInsulinInsulin AntagonistsInsulin ResistanceInsulin-Like Growth Factor IMAP Kinase Kinase 1Mitogen-Activated Protein Kinase KinasesPhosphatidylinositol 3-KinasesPhosphorylationProtein Serine-Threonine KinasesReceptor, InsulinSerineSignal TransductionTumor Necrosis Factor-alphaTyrosineConceptsPhosphorylation of Ser307IRS-1Serine/threonine phosphorylationTNF-alpha-stimulated phosphorylationInsulin-stimulated tyrosine phosphorylationRelevant phosphorylation sitesDistinct kinase pathwaysInsulin/IGFInsulin-stimulated phosphorylationThreonine phosphorylationStimulates PhosphorylationPhosphorylation sitesJun kinaseTyrosine phosphorylationKinase pathwaySer307PhosphorylationCultured cellsDistinct pathwaysHeterologous inhibitionPolyclonal antibodiesPreadipocytesPathwayAdipocytesCells
2000
Essential Role of Insulin Receptor Substrate-2 in Insulin Stimulation of Glut4 Translocation and Glucose Uptake in Brown Adipocytes*
Fasshauer M, Klein J, Ueki K, Kriauciunas K, Benito M, White M, Kahn C. Essential Role of Insulin Receptor Substrate-2 in Insulin Stimulation of Glut4 Translocation and Glucose Uptake in Brown Adipocytes*. Journal Of Biological Chemistry 2000, 275: 25494-25501. PMID: 10829031, DOI: 10.1074/jbc.m004046200.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose Tissue, BrownAnimalsArabidopsis ProteinsAzo CompoundsBiological TransportCell DifferentiationCell MembraneCells, CulturedColoring AgentsDose-Response Relationship, DrugGlucoseGlucose Transporter Type 4ImmunoblottingInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationPlant ProteinsPlasmidsPotassium ChannelsPrecipitin TestsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRetroviridaeSignal TransductionSubcellular FractionsTime FactorsConceptsInsulin-stimulated GLUT4 translocationGLUT4 translocationInsulin-induced glucose uptakeIRS-2Plasma membraneDownstream effectorsWild typeInsulin receptor substrate (IRS) proteinsBrown adipocyte cell lineInsulin stimulationGlycogen synthase kinase-3IRS-2-associated phosphatidylinositolGlucose uptakeAkt-dependent phosphorylationInsulin receptor substrate 2Synthase kinase-3Brown adipocytesMajor downstream effectorActivity of AktMature brown adipocytesAdipocyte cell lineSubstrate proteinsWild-type counterpartsKO cellsKinase 3IRS-4 Mediates Protein Kinase B Signaling during Insulin Stimulation without Promoting Antiapoptosis
Uchida T, Myers M, White M. IRS-4 Mediates Protein Kinase B Signaling during Insulin Stimulation without Promoting Antiapoptosis. Molecular And Cellular Biology 2000, 20: 126-138. PMID: 10594015, PMCID: PMC85068, DOI: 10.1128/mcb.20.1.126-138.2000.Peer-Reviewed Original ResearchConceptsPKB/AktProtein kinase BIRS-1IRS-2IRS-4Insulin stimulationGrb-2Bad phosphorylationInsulin-stimulated mitogen-activated protein kinase activityInsulin receptor substrate (IRS) proteinsProtein kinase B signalingMitogen-activated protein kinase activityProtein kinase activityHuman insulin receptorPhosphorylation of BadKinase B signalingSubstrate proteinsMyeloid progenitor cellsApoptosis of cellsKinase activityKinase BPhosphatidylinositolInsulin receptorInterleukin-3Phosphorylation
1998
Interaction of insulin receptor substrate-1 (IRS-1) with phosphatidylinositol 3-kinase: effect of substitution of serine for alanine in potential IRS-1 serine phosphorylation sites.
Delahaye L, Mothe-Satney I, Myers M, White M, Van Obberghen E. Interaction of insulin receptor substrate-1 (IRS-1) with phosphatidylinositol 3-kinase: effect of substitution of serine for alanine in potential IRS-1 serine phosphorylation sites. Endocrinology 1998, 139: 4911-9. PMID: 9832428, DOI: 10.1210/endo.139.12.6379.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate-1Protein kinase B activitySerine phosphorylation sitesRegulatory subunitReceptor substrate-1Phosphorylation sitesPotential binding sitesTyrosine phosphorylationSubstrate-1Potential tyrosine phosphorylation sitesIRS-1 interactsPotential serine phosphorylation sitesWild-type IRS-1Two-hybrid systemTyrosine phosphorylation sitesInsulin-stimulated phosphatidylinositolPhosphorylate IRS-1P85alpha regulatory subunitBinding sitesYeast kinasesThreonine phosphorylationSerine mutantsYXXM motifsB activityP85alpha
1997
Requirement of Protein Kinase Cζ for Stimulation of Protein Synthesis by Insulin
Mendez R, Kollmorgen G, White M, Rhoads R. Requirement of Protein Kinase Cζ for Stimulation of Protein Synthesis by Insulin. Molecular And Cellular Biology 1997, 17: 5184-5192. PMID: 9271396, PMCID: PMC232369, DOI: 10.1128/mcb.17.9.5184.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCalcium-Calmodulin-Dependent Protein KinasesEnzyme ActivationInsulinInsulin Receptor Substrate ProteinsMiceOligonucleotides, AntisensePhosphatidylinositol 3-KinasesPhosphoproteinsPhosphotransferases (Alcohol Group Acceptor)Protein BiosynthesisProtein Kinase CProtein Serine-Threonine KinasesProto-Oncogene Proteins c-mycRibosomal Protein S6 KinasesConceptsGeneral protein synthesisPKC-zetaCell cycle progressionProtein synthesisIRS-1Insulin receptorCycle progressionGuanine nucleotide exchange factorsNucleotide exchange factorsInsulin-stimulated protein synthesisProto-oncogene AktTarget of rapamycinMitogen-activated protein kinaseInsulin-stimulated activationPKC zeta activationProtein kinase CζGrowth-regulating proteinsActive PKC-zetaPrevention of apoptosisExchange factorPhosphorylated substratesS6 kinaseProtein kinaseGab-1Ectopic expressionActivation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha.
Uddin S, Fish E, Sher D, Gardziola C, White M, Platanias L. Activation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha. The Journal Of Immunology 1997, 158: 2390-7. PMID: 9036989, DOI: 10.4049/jimmunol.158.5.2390.Peer-Reviewed Original ResearchConceptsSerine kinaseTreatment of cellsIRS-1Kinase assaysSerine kinase activityDual-specificity enzymeP85 regulatory subunitReceptor-generated signalsIRS-1 proteinJak-1 kinasesIFN-alpha-induced activationProtein associatesP85 subunitPhosphoaminoacid analysisRegulatory subunitSerine residuesSerine phosphorylationTyrosine phosphorylationTyk-2STAT-2MAP kinaseKinase activityPretreatment of cellsInhibitor wortmanninPhosphatidylinositol
1996
The Pleckstrin Homology Domain Is the Principle Link between the Insulin Receptor and IRS-1*
Yenush L, Makati K, Smith-Hall J, Ishibashi O, Myers M, White M. The Pleckstrin Homology Domain Is the Principle Link between the Insulin Receptor and IRS-1*. Journal Of Biological Chemistry 1996, 271: 24300-24306. PMID: 8798677, DOI: 10.1074/jbc.271.39.24300.Peer-Reviewed Original ResearchAmino Acid SequenceBinding SitesBlood ProteinsCell LineInsulin Receptor Substrate ProteinsMolecular Sequence DataPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphotransferases (Alcohol Group Acceptor)PhosphotyrosineProtein BindingProtein Serine-Threonine KinasesReceptor, InsulinRecombinant ProteinsRibosomal Protein S6 KinasesYMXM Motifs and Signaling by an Insulin Receptor Substrate 1 Molecule without Tyrosine Phosphorylation Sites
Myers M, Zhang Y, Aldaz G, Grammer T, Glasheen E, Yenush L, Wang L, Sun X, Blenis J, Pierce J, White M. YMXM Motifs and Signaling by an Insulin Receptor Substrate 1 Molecule without Tyrosine Phosphorylation Sites. Molecular And Cellular Biology 1996, 16: 4147-4155. PMID: 8754813, PMCID: PMC231411, DOI: 10.1128/mcb.16.8.4147.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCell DivisionCell LineDNA ReplicationEnzyme ActivationInsulinInsulin Receptor Substrate ProteinsMolecular Sequence DataMutagenesis, Site-DirectedPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphotransferases (Alcohol Group Acceptor)PhosphotyrosineProtein Serine-Threonine KinasesReceptor, InsulinRecombinant ProteinsRibosomal Protein S6 KinasesSignal TransductionStructure-Activity RelationshipConceptsTyrosine phosphorylation sitesPotential tyrosine phosphorylation sitesYMXM motifsPhosphorylation sitesIRS-1SH2 proteinTyrosine phosphorylationSrc homology 2 domainIRS-1 moleculeWild-type IRS-1Insulin receptor substrate-1Mitogen-activated protein kinaseInsulin-stimulated mitogenesisReceptor substrate-1IRS proteinsProtein kinaseMitogenic signalsMitogenic responseSubstrate-1Mitogenic sensitivityInsulin signalingInsulin stimulationPhosphotidylinositolRedundant motifsProtein