2013
Insulin receptor substrate signaling suppresses neonatal autophagy in the heart
Riehle C, Wende A, Sena S, Pires K, Pereira R, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, Perry C, Dong X, Valdez S, Rech M, Sheng X, Weimer B, Gottlieb R, White M, Abel E. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. Journal Of Clinical Investigation 2013, 123: 5319-5333. PMID: 24177427, PMCID: PMC3859408, DOI: 10.1172/jci71171.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAnimalsApoptosisApoptosis Regulatory ProteinsAutophagyBeclin-1Cardiomyopathy, DilatedFetal HeartHeartHeart FailureInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IMiceMitochondria, HeartMyocytes, CardiacOxidative PhosphorylationPhosphorylationProtein Processing, Post-TranslationalReceptor, IGF Type 1Signal TransductionTOR Serine-Threonine KinasesConceptsInsulin receptor substrateInduction of autophagyActivation of mTORIGF-1R signalingPostnatal cardiac developmentUnrestrained autophagyCardiomyocyte-specific deletionGenetic suppressionCardiac developmentReceptor substrateIGF-1 receptorEssential adaptationProsurvival signalingAutophagic fluxAutophagy suppressionAutophagyMitochondrial dysfunctionMammalian heartPhysiological suppressionNeonatal starvationAutophagic activationSignalingIRS1IRS2Insulin action
2012
The AKTion in non-canonical insulin signaling
Cheng Z, White M. The AKTion in non-canonical insulin signaling. Nature Medicine 2012, 18: 351-353. PMID: 22395698, PMCID: PMC3982803, DOI: 10.1038/nm.2694.Peer-Reviewed Original Research
2011
Inhibition of Insulin Signaling in Endothelial Cells by Protein Kinase C-induced Phosphorylation of p85 Subunit of Phosphatidylinositol 3-Kinase (PI3K)*
Maeno Y, Li Q, Park K, Rask-Madsen C, Gao B, Matsumoto M, Liu Y, Wu I, White M, Feener E, King G. Inhibition of Insulin Signaling in Endothelial Cells by Protein Kinase C-induced Phosphorylation of p85 Subunit of Phosphatidylinositol 3-Kinase (PI3K)*. Journal Of Biological Chemistry 2011, 287: 4518-4530. PMID: 22158866, PMCID: PMC3281670, DOI: 10.1074/jbc.m111.286591.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCells, CulturedClass Ia Phosphatidylinositol 3-KinaseEndothelial CellsEnzyme ActivationInsulinInsulin Receptor Substrate ProteinsMetabolic DiseasesNitric Oxide Synthase Type IIIPhosphorylationProtein Kinase CProto-Oncogene Proteins c-aktSignal TransductionVascular Endothelial Growth Factor AConceptsP85/PI3KPI3KPKC activationInsulin receptor substrateProtein kinase C activationEndothelial nitric oxide synthaseProtein kinase CAkt/endothelial nitric oxide synthaseKinase C activationPI3K/Akt pathwayP85 subunitDeletion mutantsGeneral activatorTyrosine phosphorylationReceptor substrateEndothelial cellsInsulin signalingInsulin activationKinase CAkt pathwayPhosphorylationC activationThr-86SignalingIRS1
2009
The Role of Insulin‐like Signaling for the Central and Peripheral Regulation of Nutrient Homeostasis and Life Span
White M. The Role of Insulin‐like Signaling for the Central and Peripheral Regulation of Nutrient Homeostasis and Life Span. The FASEB Journal 2009, 23: 329.2-329.2. DOI: 10.1096/fasebj.23.1_supplement.329.2.Peer-Reviewed Original ResearchInsulin-like signalingNutrient homeostasisHigher animalsInsulin receptor substrateLife spanAge-related diseasesMammalian lifespanLower metazoansReceptor substrateInsulin resistanceInsulin secretionNutrient storageNarrow physiologic rangeSignalingMetazoansAction of insulinReduced insulin secretionRole of insulinHomeostasisBlood glucose concentrationCompensatory hyperinsulinemiaGlucose intolerancePeripheral regulationPeripheral tissuesGlucose homeostasis
2008
Inactivation of Hepatic Foxo1 by Insulin Signaling Is Required for Adaptive Nutrient Homeostasis and Endocrine Growth Regulation
Dong X, Copps K, Guo S, Li Y, Kollipara R, DePinho R, White M. Inactivation of Hepatic Foxo1 by Insulin Signaling Is Required for Adaptive Nutrient Homeostasis and Endocrine Growth Regulation. Cell Metabolism 2008, 8: 65-76. PMID: 18590693, PMCID: PMC2929667, DOI: 10.1016/j.cmet.2008.06.006.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsEndocrine GlandsFoodForkhead Transcription FactorsGrowthHomeostasisInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsLiverMiceMice, KnockoutNerve Tissue ProteinsPhosphoproteinsSignal TransductionConceptsInsulin signalingForkhead transcription factor FOXO1Insulin-regulated glucose homeostasisExpression of genesTranscription factor FOXO1Endocrine growth regulationNutrient homeostasisMetabolic genesStress resistancePerturbed expressionActive FoxO1Growth regulationLiver-specific deletionHepatic FoxO1Hepatic insulin resistanceBody sizePI3KHepatic Irs1FOXO1TranscriptomeSomatic growthDKO miceGenesSignalingHomeostasisResponse to Comment on "Brain IRS2 Signaling Coordinates Life Span and Nutrient Homeostasis"
Taguchi A, White M. Response to Comment on "Brain IRS2 Signaling Coordinates Life Span and Nutrient Homeostasis". Science 2008, 320: 1012-1012. DOI: 10.1126/science.1152620.Peer-Reviewed Original ResearchInsulin-Like Signaling, Nutrient Homeostasis, and Life Span
Taguchi A, White M. Insulin-Like Signaling, Nutrient Homeostasis, and Life Span. Annual Review Of Physiology 2008, 70: 191-212. PMID: 17988211, DOI: 10.1146/annurev.physiol.70.113006.100533.Peer-Reviewed Original Research
2007
Brain IRS2 Signaling Coordinates Life Span and Nutrient Homeostasis
Taguchi A, Wartschow L, White M. Brain IRS2 Signaling Coordinates Life Span and Nutrient Homeostasis. Science 2007, 317: 369-372. PMID: 17641201, DOI: 10.1126/science.1142179.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBrainCircadian RhythmCrosses, GeneticDietFemaleGlucoseHomeostasisInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsLongevityMaleMiceMice, KnockoutMice, TransgenicOverweightOxidation-ReductionOxygen ConsumptionPhosphoproteinsRespirationSignal TransductionSuperoxide Dismutase
2005
Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*
Kushner J, Simpson L, Wartschow L, Guo S, Rankin M, Parsons R, White M. Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*. Journal Of Biological Chemistry 2005, 280: 39388-39393. PMID: 16170201, DOI: 10.1074/jbc.m504155200.Peer-Reviewed Original ResearchConceptsInsulin/insulin-like growth factorWild typeIrs2 branchBeta-cell growthInsulin-like growth factorPhosphatase PTENGrowth factorFoxO1 phosphorylationBeta-cell massPTEN expressionAktPTENCascadeSmall isletsGlucose homeostasisInsulin productionGrowthIslet growthSufficient insulinPhosphatidylinositolTolerancePhosphorylationMiceSignalingHomeostasis
2004
Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation
Carlson C, White M, Rondinone C. Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochemical And Biophysical Research Communications 2004, 316: 533-539. PMID: 15020250, DOI: 10.1016/j.bbrc.2004.02.082.Peer-Reviewed Original ResearchConceptsSerine 307 phosphorylationSerine 307Rapamycin-sensitive mannerInsulin receptor substrateRole of mTORAmino acid stimulationActivation of mTORPhosphatase PP2AKinase mTOROkadaic acidReceptor substrateInsulin signalingIRS-1MTOR activityPhosphorylationMammalian targetMTORCytosolic fractionRapamycinPP2AAcid stimulationPKBInhibitorsSignalingJNK
2003
Insulin Signaling in Health and Disease
White M. Insulin Signaling in Health and Disease. Science 2003, 302: 1710-1711. PMID: 14657487, DOI: 10.1126/science.1092952.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCytokinesDiabetes MellitusDiabetes Mellitus, Type 1Diabetes Mellitus, Type 2HumansInflammationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansMiceModels, BiologicalObesityPhosphoproteinsPhosphorylationReceptor, InsulinSignal TransductionSomatomedins
2002
Insulin Signaling After Exercise in Insulin Receptor Substrate-2-Deficient Mice
Howlett K, Sakamoto K, Hirshman M, Aschenbach W, Dow M, White M, Goodyear L. Insulin Signaling After Exercise in Insulin Receptor Substrate-2-Deficient Mice. Diabetes 2002, 51: 479-483. PMID: 11812758, DOI: 10.2337/diabetes.51.2.479.Peer-Reviewed Original ResearchConceptsPhosphotyrosine-associated phosphatidylinositolIRS-2 tyrosine phosphorylationIRS-2 signalingInsulin receptor substrate-2-deficient (IRS2(-/-)) miceWild-type miceIRS-2-deficient miceEnhanced insulin actionWT miceTyrosine phosphorylationTreadmill exerciseInsulin receptor substrateInsulin actionMiceImmediate periodSkeletal muscleInsulin-stimulated responsesInsulin signalingMarked increaseReceptor substrateExerciseInsulinPresent studySignalingPhosphorylation
1996
Insulin Signal Transduction and the IRS Proteins
Myers M, White M. Insulin Signal Transduction and the IRS Proteins. The Annual Review Of Pharmacology And Toxicology 1996, 36: 615-658. PMID: 8725404, DOI: 10.1146/annurev.pa.36.040196.003151.Peer-Reviewed Original ResearchConceptsIRS proteinsIntracellular tyrosine kinaseBinding of SH2Numerous intracellular signalsTyrosine phosphorylation sitesReceptor-mediated phosphorylationInsulin signal transductionPTB domainCellular physiologyPhosphorylation sitesSignal transductionIntracellular signalsExtracellular domainTyrosine kinaseCytokine receptorsBiochemical eventsInsulin receptorGlucose transportProteinPhosphorylationSignalingGrowth factorSpecific receptorsExciting moleculesPropagation of signals