2016
Down-regulation of Insulin Receptor Substrate 1 during Hyperglycemia Induces Vascular Smooth Muscle Cell Dedifferentiation*
Xi G, Wai C, White M, Clemmons D. Down-regulation of Insulin Receptor Substrate 1 during Hyperglycemia Induces Vascular Smooth Muscle Cell Dedifferentiation*. Journal Of Biological Chemistry 2016, 292: 2009-2020. PMID: 28003360, PMCID: PMC5290970, DOI: 10.1074/jbc.m116.758987.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate-1Receptor substrate-1IRS-1Differentiated stateSubstrate-1Aberrant signalingMetabolic stressVascular smooth muscle cell dedifferentiationIGF-I stimulationIRS-1 expressionVascular smooth muscle cell migrationScaffold proteinSHPS-1Transcription factorsSmooth muscle cell dedifferentiationSmooth muscle cell migrationMuscle cell dedifferentiationMuscle cell migrationReceptor signalsVSMC dedifferentiationCell migrationInsulin-like growth factor ICell dedifferentiationMajor risk factorDevelopment of atherosclerosis
2004
Insulin resistance in thermally-injured rats is associated with post-receptor alterations in skeletal muscle, liver and adipose tissue.
Carter E, Burks D, Fischman A, White M, Tompkins R. Insulin resistance in thermally-injured rats is associated with post-receptor alterations in skeletal muscle, liver and adipose tissue. International Journal Of Molecular Medicine 2004, 14: 653-8. PMID: 15375597, DOI: 10.3892/ijmm.14.4.653.Peer-Reviewed Original ResearchConceptsUrinary C-peptide excretionC-peptide excretionPost-receptor alterationsInsulin resistanceInsulin receptor bindingSkeletal muscleInsulin infusionBurn injuryAdipose tissueFull-thickness scald injuryGlucose productionSham-treated control animalsReceptor bindingHepatic glucose productionIRS-1 expressionWestern blot methodBinding of insulinAbsence of changesScald injuryBolus injectionRat modelPossible molecular mechanismsControl animalsInjuryThermal injury
1999
Early biochemical events in insulin-stimulated fluid phase endocytosis
Pitterle D, Sperling R, Myers M, White M, Blackshear P. Early biochemical events in insulin-stimulated fluid phase endocytosis. American Journal Of Physiology 1999, 276: e94-e105. PMID: 9886955, DOI: 10.1152/ajpendo.1999.276.1.e94.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate-1Fluid-phase endocytosisMitogen-activated protein kinase kinaseRat-1 cellsInsulin receptorDominant negative mutant RasHematopoietic precursor cell lineBat cellsHIRc-B cellsInhibitor of PIProtein kinase kinaseWild-type RasMEK inhibitor PD 98059Active insulin receptorEndogenous IRS-1Receptor substrate-1Inhibitor PD 98059Certain cell typesPrecursor cell lineInitial molecular mechanismsIRS-1 expressionKinase kinaseEarly biochemical eventsMutant RasSubstrate-1