2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, PMCID: PMC11602551, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibitionOverexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment
Martinez-Terroba E, Plasek-Hegde L, Chiotakakos I, Li V, de Miguel F, Robles-Oteiza C, Tyagi A, Politi K, Zamudio J, Dimitrova N. Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment. Science Immunology 2024, 9: eadh5462. PMID: 38875320, DOI: 10.1126/sciimmunol.adh5462.Peer-Reviewed Original ResearchConceptsTumor microenvironmentLung adenocarcinomaMetastatic diseasePromoting metastatic diseaseGlobal chromatin accessibilityMetastasis-associated lung adenocarcinoma transcript 1Overexpression of MALAT1Lung adenocarcinoma transcript 1Lung adenocarcinoma metastasisCCL2 blockadeInflammatory reprogrammingEnhanced cell mobilityMacrophage depletionMechanism of actionTumor typesTumor progressionMouse modelCell mobilizationTumorLong noncoding RNAsParacrine secretionMetastasisCell linesTranscript 1MicroenvironmentPlasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma
Kim I, Diamond M, Yuan S, Kemp S, Kahn B, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Baslan T, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nature Communications 2024, 15: 1532. PMID: 38378697, PMCID: PMC10879147, DOI: 10.1038/s41467-024-46048-7.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaEpithelial-to-mesenchymal transitionResistance to immunotherapyT cell killingDuctal adenocarcinomaAcquired resistance to immunotherapyResistance to cancer immunotherapyMouse model of pancreatic ductal adenocarcinomaModel of pancreatic ductal adenocarcinomaExpression of immune checkpointsInterferon regulatory factor 6Effect of TNF-aEMT transcription factor ZEB1Antigen presentation machineryTumor immune microenvironmentCell-intrinsic defectsPro-apoptotic effectsPresentation machineryCancer immunotherapyImmune checkpointsTumor relapseImmune microenvironmentPrimary resistanceT cellsAcquired resistance
2023
An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1
Aftab F, Rodriguez-Fuguet A, Silva L, Kobayashi I, Sun J, Politi K, Levantini E, Zhang W, Kobayashi S, Zhang W. An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1. British Journal Of Cancer 2023, 128: 1647-1664. PMID: 36810913, PMCID: PMC10133251, DOI: 10.1038/s41416-023-02196-z.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorErbB ReceptorsLungLung NeoplasmsMiceMice, TransgenicMucin-1Oncogene ProteinsPurinesConceptsProtein-protein interactionsProximity ligation assayWhole transcriptomic profileEGFR inhibitorsMUC1-CTThermal stability assaysRNA sequencingTransgenic micePurine biosynthesisTranscriptomic profilesAICARTumor cell growthLigation assayMucin 1DNA damageCell growthMethodsCell viabilityLung tumor tissuesTumor formationCancer cellsEGFR-mutant lung cancerStability assaysJAKJAK1Dual immunofluorescence staining
2012
Targeting the FOXO1/KLF6 axis regulates EGFR signaling and treatment response
Sangodkar J, Dhawan N, Melville H, Singh V, Yuan E, Rana H, Izadmehr S, Farrington C, Mazhar S, Katz S, Albano T, Arnovitz P, Okrent R, Ohlmeyer M, Galsky M, Burstein D, Zhang D, Politi K, DiFeo A, Narla G. Targeting the FOXO1/KLF6 axis regulates EGFR signaling and treatment response. Journal Of Clinical Investigation 2012, 122: 2637-2651. PMID: 22653055, PMCID: PMC3386822, DOI: 10.1172/jci62058.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAdenocarcinomaAdenocarcinoma of LungAnimalsAntineoplastic AgentsCell Line, TumorDrug Resistance, NeoplasmDrug SynergismEnzyme ActivationErbB ReceptorsErlotinib HydrochlorideFemaleForkhead Box Protein O1Forkhead Transcription FactorsGene Expression Regulation, NeoplasticHumansKruppel-Like Factor 6Kruppel-Like Transcription FactorsLung NeoplasmsMiceMice, Inbred BALB CMice, NudeMutationProto-Oncogene ProteinsProto-Oncogene Proteins c-aktQuinazolinesReal-Time Polymerase Chain ReactionSignal TransductionTranscription, GeneticTrifluoperazineTumor BurdenXenograft Model Antitumor AssaysConceptsAnti-EGFR-based therapyEGFR signalingKruppel-like factor 6Lung adenocarcinomaForkhead box O1Xenograft models of lung adenocarcinomaModel of lung adenocarcinomaMetastatic lung adenocarcinomaTreat advanced cancersMolecular drivers of disease progressionDrivers of disease progressionOncogenic EGFR signalingActivation of Akt signalingFoxO1 nuclear exportTreating resistant diseaseIn vivo modelsCell culturesErlotinib resistanceResistant diseaseTreatment responseMolecular therapiesXenograft modelFDA-approved drugsDisease progressionEGFR activation