2023
Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation
Sun J, Osenberg S, Irwin A, Ma L, Lee N, Xiang Y, Li F, Wan Y, Park I, Maletic-Savatic M, Ballas N. Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation. Cell Reports 2023, 42: 111942. PMID: 36640327, PMCID: PMC10857774, DOI: 10.1016/j.celrep.2022.111942.Peer-Reviewed Original ResearchConceptsMECP2 mutationsTranscriptional regulator MeCP2Rett syndromeTranscriptional landscapeTranscriptional changesDysfunctional mitochondriaHuman astrocytesAstrocyte gene expressionGene expressionMECP2 geneMolecular signaturesMutationsPost-natal maturationMaturationDevelopmental maturationBrain bioenergeticsMolecular featuresFunctional maturationStellate morphologyMature morphologyMetabolic aberrationsHuman-based modelsAstrocytesKey roleNeurodevelopmental disorders
2020
Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons
Xiang Y, Tanaka Y, Patterson B, Hwang SM, Hysolli E, Cakir B, Kim KY, Wang W, Kang YJ, Clement EM, Zhong M, Lee SH, Cho YS, Patra P, Sullivan GJ, Weissman SM, Park IH. Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons. Molecular Cell 2020, 79: 84-98.e9. PMID: 32526163, PMCID: PMC7375197, DOI: 10.1016/j.molcel.2020.05.016.Peer-Reviewed Original ResearchConceptsMECP2 mutant neuronsEnhancer-promoter interactionsRett syndromeRTT-like phenotypesChromatin bindingMeCP2 functionMethyl-CpGAbnormal transcriptionRTT etiologyMutant neuronsBET inhibitorsPotential therapeutic opportunitiesMECP2 mutationsProtein 2Human brain organoidsFunctional phenotypeJQ1BRD4Therapeutic opportunitiesBrain organoidsFunction underliesMutationsPhenotypeHuman brain culturesCritical driver
2013
Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2)
Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH. Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Human Molecular Genetics 2013, 23: 1045-1055. PMID: 24129406, PMCID: PMC3900111, DOI: 10.1093/hmg/ddt500.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsMutant MECP2X chromosomeMethyl-CpGStem cellsGene expressionLong-range chromatin interactionsFundamental cellular physiologyRett syndromeMitochondrial membrane proteinInactive X chromosomeProtein 2Chromatin interactionsTranscriptional regulationTranscription regulatorsCellular physiologyTranscriptome analysisLoss of functionMembrane proteinsMeCP2 resultsDe novo mutationsRegulatory mechanismsMeCP2ChromosomesRTT patientsInvestigation of Rett syndrome using pluripotent stem cells
Dajani R, Koo S, Sullivan GJ, Park I. Investigation of Rett syndrome using pluripotent stem cells. Journal Of Cellular Biochemistry 2013, 114: 2446-2453. PMID: 23744605, PMCID: PMC3773984, DOI: 10.1002/jcb.24597.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationHumansInduced Pluripotent Stem CellsMethyl-CpG-Binding Protein 2Rett SyndromeConceptsPluripotent stem cellsStem cellsRett syndromeFunction of MeCP2Pathophysiology of RTTEmbryonic stem cellsEpigenetic instabilityTranscription factorsDe novo mutationsRTT phenotypeCurrent iPSCHuman diseasesMeCP2Novo mutationsIPSCsCellsNeurodevelopmental disordersOverexpressionMutationsPhenotypeMurine modelRecapitulationMaintenanceIdentificationMeCP2 Regulates the Synaptic Expression of a Dysbindin-BLOC-1 Network Component in Mouse Brain and Human Induced Pluripotent Stem Cell-Derived Neurons
Larimore J, Ryder PV, Kim KY, Ambrose LA, Chapleau C, Calfa G, Gross C, Bassell GJ, Pozzo-Miller L, Smith Y, Talbot K, Park IH, Faundez V. MeCP2 Regulates the Synaptic Expression of a Dysbindin-BLOC-1 Network Component in Mouse Brain and Human Induced Pluripotent Stem Cell-Derived Neurons. PLOS ONE 2013, 8: e65069. PMID: 23750231, PMCID: PMC3672180, DOI: 10.1371/journal.pone.0065069.Peer-Reviewed Original ResearchConceptsMutant miceRett syndrome patientsBDNF contentDeficient miceSyndrome patientsInduced pluripotent stem cell-derived neuronsHuman Induced Pluripotent Stem Cell-Derived NeuronsPluripotent stem cell-derived neuronsStem cell-derived neuronsAutism spectrum disorderNormal human hippocampusCell-derived neuronsHuman inducible pluripotent stem cellsAsymmetric synapsesQuantitative real-time PCRHippocampal samplesReal-time PCRMouse hippocampusHuman neuronsPathogenic mechanismsQuantitative qRT-PCRQuantitative immunohistochemistryExpression of componentsSynaptic expressionInducible pluripotent stem cells
2011
Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome
Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 14169-14174. PMID: 21807996, PMCID: PMC3161557, DOI: 10.1073/pnas.1018979108.Peer-Reviewed Original ResearchMeSH KeywordsAdultAmino Acid SequenceBase SequenceBiomarkersCell DifferentiationChildChild, PreschoolChromosomes, Human, XEmbryonic Stem CellsFemaleFibroblastsGene Expression RegulationHumansInduced Pluripotent Stem CellsKruppel-Like Factor 4Methyl-CpG-Binding Protein 2Molecular Sequence DataNeuronsRett SyndromeX Chromosome InactivationConceptsX chromosomePluripotent stem cellsSingle active X chromosomeRett syndromeActive X chromosomePathophysiology of RTTX-chromosome inactivationStem cellsInduced pluripotent stem cellsRTT fibroblastsMurine genetic modelsMolecular dissectionChromosome inactivationFactors OCT4Methyl-CpGRTT phenotypeNeuronal differentiationChromosomesPurposeful hand movementsNormal developmentRTT modelModel of RTTProtein 2Maturation defectsNeuronal maturation