1994
Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons
Jiang C, Sigworth F, Haddad G. Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. Journal Of Neuroscience 1994, 14: 5590-5602. PMID: 8083755, PMCID: PMC6577106, DOI: 10.1523/jneurosci.14-09-05590.1994.Peer-Reviewed Original ResearchConceptsSubstantia nigra neuronsRat substantia nigra neuronsEffects of hypoxiaGlibenclamide binding sitesEffect of ATPCell-attached patchesNeuronal survivalKATP channelsResult of Ca2Different subtypesOutward currentsNeuronal structuresFree Ca2HypoxiaMetabolic stressNeuronsDeleterious changesSingle-channel currentsChannel activityO2 deprivationInternal ATPOxygen deprivationActivationHigh Ca2Membrane potential
1991
Changes in channel properties of acetylcholine receptors during the time course of thiol chemical modifications
Bouzat C, Barrantes F, Sigworth F. Changes in channel properties of acetylcholine receptors during the time course of thiol chemical modifications. Pflügers Archiv - European Journal Of Physiology 1991, 418: 51-61. PMID: 2041725, DOI: 10.1007/bf00370451.Peer-Reviewed Original ResearchConceptsSingle acetylcholine receptor channelsHigh agonist concentrationsPatch-clamp techniqueOpen timeConcentration of NEMSilent periodAcetylcholine receptorsN-ethylmaleimideAcetylcholine receptor channelsAgonist concentrationsChannel open probabilityReceptor channelsAChRMM N-ethylmaleimideTime of exposureRate of occurrenceSingle-channel currentsTime courseNEM treatmentControl receptorsReceptorsSignificant changesTreatmentShort openingsSlight reduction
1990
Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Single channel current kinetics reveal distinct agonist binding affinities.
Sine S, Claudio T, Sigworth F. Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Single channel current kinetics reveal distinct agonist binding affinities. The Journal Of General Physiology 1990, 96: 395-437. PMID: 1698917, PMCID: PMC2228994, DOI: 10.1085/jgp.96.2.395.Peer-Reviewed Original Research
1989
Purified, modified eel sodium channels are active in planar bilayers in the absence of activating neurotoxins.
Shenkel S, Cooper E, James W, Agnew W, Sigworth F. Purified, modified eel sodium channels are active in planar bilayers in the absence of activating neurotoxins. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 9592-9596. PMID: 2556720, PMCID: PMC298544, DOI: 10.1073/pnas.86.23.9592.Peer-Reviewed Original Research
1988
Open channel noise. IV. Estimation of rapid kinetics of formamide block in gramicidin A channels
Heinemann S, Sigworth F. Open channel noise. IV. Estimation of rapid kinetics of formamide block in gramicidin A channels. Biophysical Journal 1988, 54: 757-764. PMID: 2465033, PMCID: PMC1330382, DOI: 10.1016/s0006-3495(88)83013-3.Peer-Reviewed Original ResearchConceptsBiological ion channelsGramicidin A channelsTime resolutionCurrent histogramFast time scaleOpen channel noiseCharacteristic timeNoise measurementsSingle-channel experimentsNoise experimentsDirect measurementTime scalesA channelsSpectral densityBandwidth limitationsCurrentTheoretical approachMeasurementsIon channelsBlocking processChannelsSingle-channel recordingsSingle-channel currentsNoiseDependence