2018
Computational methods for birth‐death processes
Crawford FW, Ho LST, Suchard MA. Computational methods for birth‐death processes. Wiley Interdisciplinary Reviews Computational Statistics 2018, 10 PMID: 29942419, PMCID: PMC6014701, DOI: 10.1002/wics.1423.Peer-Reviewed Original ResearchBirth-death processStatistical inferenceGeneral birth–death processesFinite-time transitionBasic mathematical theoryNon-negative integersContinuous-time Markov chainMaximum likelihood estimationMathematical theoryTheoretical propertiesComputational difficultiesProbability distributionMarkov chainAnalytic expressionsEM algorithmEquilibrium probabilityStatistical workLikelihood estimationSimple caseLinear processRich varietyComputational methodsSimple linear processSummary statisticsInference
2016
The Graphical Structure of Respondent-driven Sampling
Crawford FW. The Graphical Structure of Respondent-driven Sampling. Sociological Methodology 2016, 46: 187-211. PMID: 31607761, PMCID: PMC6788810, DOI: 10.1177/0081175016641713.Peer-Reviewed Original Research
2014
On the distribution of interspecies correlation for Markov models of character evolution on Yule trees
Mulder WH, Crawford FW. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees. Journal Of Theoretical Biology 2014, 364: 275-283. PMID: 25240905, PMCID: PMC4256168, DOI: 10.1016/j.jtbi.2014.09.016.Peer-Reviewed Original ResearchConceptsPhylogenetic treeYule treeProbability distributionPhylogenetic information contentContinuous-time modelPhylogenetic inference methodsOrnstein-Uhlenbeck modelCharacter evolutionPhylogenetic studiesNumber of mutationsTrait patternsRelated organismsStochastic modelNew speciesSimple continuous-time modelBrownian motionYule processEvolutionary processesPhenotypic changesMutation modelInference methodsSite patternsOptimal designSpeciationMutations