2024
3D gamma analysis between treatment plans for nominally beam‐matched medical linear accelerators using PyMedPhys
Guan F, Donahue W, Biggs S, Jennings M, Draeger E, Chen H, Wang Y, Nguyen N, Carlson D, Chen Z, Han D. 3D gamma analysis between treatment plans for nominally beam‐matched medical linear accelerators using PyMedPhys. Precision Radiation Oncology 2024 DOI: 10.1002/pro6.1247.Peer-Reviewed Original ResearchGamma analysisGamma indexEvaluation of treatment plansPlanned dose distributionMedical linear acceleratorPass rateEfficient treatment deliveryMedian pass rateDose distributionTreatment planningLinacLinear acceleratorCalculated doseTreatment deliveryConformal radiotherapyOriginal planRadiation therapyPatient transferDisease sitesIn-house scriptsBeam modelPatientsBeamRadiotherapyAccelerationThursday, July 11, 20244:00 PM - 5:00 PM PP01 Presentation Time: 4:00 PM Investigating Shielding as a Dose-Shaping Tool in Flattening Distal Dose Profiles for Single-Channel Vaginal Cylinders
Tien C, Mullane S, Draeger E, Rivard M, Chen Z. Thursday, July 11, 20244:00 PM - 5:00 PM PP01 Presentation Time: 4:00 PM Investigating Shielding as a Dose-Shaping Tool in Flattening Distal Dose Profiles for Single-Channel Vaginal Cylinders. Brachytherapy 2024, 23: s26-s27. DOI: 10.1016/j.brachy.2024.08.020.Peer-Reviewed Original ResearchModel-based dose calculation algorithmsSingle-channel vaginal cylinderDose profilesDose distributionVaginal cylinderCentral axisCustomized shieldingRegions of high doseAnisotropic dose distributionUniform dose profileDose calculation algorithmWater-equivalent materialDose calculation methodMonte CarloIr-192 seedsDose gridIr-192MC simulationsRelative doseShielding materialsCalculation algorithmSource transitionDose optimizationLateral radiusShieldingPO0116 Design and Characterization of a Brachytherapy Applicator with Modulated Shielding (MOSH) for the Treatment of Cervical Cancer
Schwipper C, Mullane S, Draeger E, Chen Z, Rivard M, Tien C. PO0116 Design and Characterization of a Brachytherapy Applicator with Modulated Shielding (MOSH) for the Treatment of Cervical Cancer. Brachytherapy 2024, 23: s92. DOI: 10.1016/j.brachy.2024.08.134.Peer-Reviewed Original ResearchDose distributionBrachytherapy applicationsOAR dosesIr-192TG-43 dose calculation formalismShield geometryReduces dose to OARAAPM TG-43 formalismShielding materialsDose calculation formalismHigh-Z shieldingReduced OAR dosesCalculated dose distributionsTG-43 formalismDose-volume objectivesDose to OARsTreatment of cervical cancerHDR brachytherapy applicatorsHigh-risk clinical target volumeIr-192 sourceImproved dose distributionClinical target volumeSparing OARsTOPAS MCYb-169
2020
The Impact of Radiation Energy on Dose Homogeneity and Organ Dose in the Gttingen Minipig Total-Body Irradiation Model
Poirier Y, Becker S, Decesaris C, Culberson W, Draeger E, Gerry AJ, Johnstone CD, Gibbs A, Vujaskovic Z, Jackson IL. The Impact of Radiation Energy on Dose Homogeneity and Organ Dose in the Gttingen Minipig Total-Body Irradiation Model. Radiation Research 2020, 194: 544-556. PMID: 33045066, DOI: 10.1667/rade-20-00135.1.Peer-Reviewed Original ResearchMeSH KeywordsAbdomenAbsorption, RadiationAnimalsBody SizeBody WeightCobalt RadioisotopesDose-Response Relationship, RadiationGamma RaysMaleModels, AnimalOrgan SpecificityParticle AcceleratorsPelvisPhotonsProne PositionRadiation DosageRadiation ToleranceRadioisotope TeletherapyRadiotherapy Planning, Computer-AssistedRadiotherapy, High-EnergyShoulderSwineSwine, MiniatureTomography, X-Ray ComputedWhole-Body IrradiationConceptsTotal body irradiationDose-volume histogramsGöttingen minipigsThoracic organsMedical countermeasuresRadiation dose-response relationshipDose-response relationshipNormal tissue damageDose distributionExperienced radiation oncologistsAdditional confounding factorsTBI modelPelvic organsHigh doseIndividual organsAnimal modelsAverage doseConfounding factorsRadiation oncologistsTissue damageLess doseOrgan doseAverage dosesDose homogeneityDose
2016
SU‐F‐J‐200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy
Mackin D, Beddar S, Polf J, Peterson S, Draeger E. SU‐F‐J‐200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy. Medical Physics 2016, 43: 3454-3454. DOI: 10.1118/1.4956108.Peer-Reviewed Original ResearchBeam rangeGamma raysGamma energiesParticle therapyEnergy windowingCompton scatter cameraGamma-ray spectraPrompt gamma raysParticle beam rangeCompton camera imagingRay spectrumParticle beamsNuclear interactionsNumber of gammaCompton cameraCo-60 sourceScattering angleBack-projection algorithmEnergy depositionEvent energyEvent selectionCdZnTe crystalsCC eventsScatter positionDose distributionTU‐FG‐BRB‐05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy
Draeger E, Chen H, Mackin D, Peterson S, Avery S, Beddar S, Polf J. TU‐FG‐BRB‐05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy. Medical Physics 2016, 43: 3757-3757. DOI: 10.1118/1.4957545.Peer-Reviewed Original ResearchRange verificationGamma imaging systemPG emissionProton beamImaging systemPencil beamPrototype Compton cameraProton pencil beamsProton radiotherapyMeV pencil beamBragg peak rangeNew imaging systemCompton cameraWater phantomProton beam irradiationBeamCommercial treatment planning systemBeam irradiationClinical proton pencil beamsDose distributionTreatment planning systemDose deliveryEmissionPhantomMeasurements