2000
A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering11Edited by P. E. Wright
Bu Z, Neumann D, Lee S, Brown C, Engelman D, Han C. A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering11Edited by P. E. Wright. Journal Of Molecular Biology 2000, 301: 525-536. PMID: 10926525, DOI: 10.1006/jmbi.2000.3978.Peer-Reviewed Original ResearchConceptsVibrational motionDiffusive motionPicosecond time scaleQuasielastic neutron scatteringSuch collective motionLength scalesPotential barrierQuasielastic scattering intensityCorrelation lengthJump motionShort length scalesBovine alpha-lactalbuminNeutron scatteringMolten globuleScattering intensityLong length scalesCollective motionMean-square amplitudesAtom clustersHigh-frequency motionsMolten globule stateNon-exchangeable protonsCluster sizeFrequency motionsProtein dynamics
1997
Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody
Hunt J, McCrea P, Zaccaı̈ G, Engelman D. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 273: 1004-1019. PMID: 9367787, DOI: 10.1006/jmbi.1997.1330.Peer-Reviewed Original ResearchConceptsMembrane protein complexesIntegral membrane proteinsProtein complexesMembrane proteinsIntegral membrane protein complexPhospholipid vesiclesSmall unilamellar phospholipid vesiclesUnilamellar phospholipid vesiclesMolecular massF. MoodySpatial arrangementNon-ionic detergentIndividual complexesVesiclesModel systemMonomeric bacteriorhodopsinProteinUnknown scopeComplexesAggregation stateRadius of gyrationBacteriorhodopsinDetergentsBilayers
1994
Rotational orientation of transmembrane α-helices in bacteriorhodopsin A neutron diffraction study
Samatey F, Zaccaï G, Engelman D, Etchebest C, Popot J. Rotational orientation of transmembrane α-helices in bacteriorhodopsin A neutron diffraction study. Journal Of Molecular Biology 1994, 236: 1093-1104. PMID: 8120889, DOI: 10.1016/0022-2836(94)90014-0.Peer-Reviewed Original Research
1989
Tertiary structure of bacteriorhodopsin Positions and orientations of helices A and B in the structural map determined by neutron diffraction
Popot J, Engelman D, Gurel O, Zaccaï G. Tertiary structure of bacteriorhodopsin Positions and orientations of helices A and B in the structural map determined by neutron diffraction. Journal Of Molecular Biology 1989, 210: 829-847. PMID: 2614846, DOI: 10.1016/0022-2836(89)90111-3.Peer-Reviewed Original Research
1988
Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli
Capel M, Kjeldgaard M, Engelman D, Moore P. Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1988, 200: 65-87. PMID: 3288761, DOI: 10.1016/0022-2836(88)90334-8.Peer-Reviewed Original Research
1987
A Complete Mapping of the Proteins in the Small Ribosomal Subunit of Escherichia coli
Capel M, Engelman D, Freeborn B, Kjeldgaard M, Langer J, Ramakrishnan V, Schindler D, Schneider D, Schoenborn B, Sillers I, Yabuki S, Moore P. A Complete Mapping of the Proteins in the Small Ribosomal Subunit of Escherichia coli. Science 1987, 238: 1403-1406. PMID: 3317832, DOI: 10.1126/science.3317832.Peer-Reviewed Original Research
1984
Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer
Gogol E, Engelman D. Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer. Biophysical Journal 1984, 46: 491-495. PMID: 6498267, PMCID: PMC1435021, DOI: 10.1016/s0006-3495(84)84046-1.Peer-Reviewed Original ResearchPositions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli
Ramakrishnan V, Capel M, Kjeldgaard M, Engelman D, Moore P. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1984, 174: 265-284. PMID: 6371250, DOI: 10.1016/0022-2836(84)90338-3.Peer-Reviewed Original ResearchNeutron Scattering and the 30 S Ribosomal Subunit of E. coli
Moore P, Engelman D, Langer J, Ramakrishnan V, Schindler D, Schoenborn B, Sillers I, Yabuki S. Neutron Scattering and the 30 S Ribosomal Subunit of E. coli. Basic Life Sciences 1984, 27: 73-91. PMID: 6370225, DOI: 10.1007/978-1-4899-0375-4_4.Peer-Reviewed Original ResearchInelastic Neutron Scattering Studies of Hexokinase in Solution
Engelman D, Dianoux A, Cusack S, Jacrot B. Inelastic Neutron Scattering Studies of Hexokinase in Solution. Basic Life Sciences 1984, 27: 365-380. PMID: 6712571, DOI: 10.1007/978-1-4899-0375-4_22.Peer-Reviewed Original ResearchConceptsNeutron scatteringInelastic Neutron Scattering StudyInelastic neutron scatteringInstitute Laue-LangevinNeutron Scattering StudyBiological macromoleculesMolecular dynamicsInelastic scatteringExcited modesScattering StudyScatteringSuch measurementsSuch experimentsDynamic propertiesMacromoleculesSolutionProperties
1982
Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose
Jacrot B, Cusack S, Dianoux A, Engelman D. Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose. Nature 1982, 300: 84-86. PMID: 6752726, DOI: 10.1038/300084a0.Peer-Reviewed Original ResearchConceptsInelastic neutron scatteringInelastic neutronField of biophysicsAtomic motionNeutron scatteringDynamical informationDynamical behaviorLimited experimental informationExperimental informationTemperature dependenceBiological macromoleculesWide frequencyTheoretical understandingMean positionNeutronsScatteringDynamicsInternal mobilityMotionDependenceBiophysicsFrequencyFluctuationsFieldExistence
1981
Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli
Ramakrishnan V, Yabuki S, Sillers I, Schindler D, Engelman D, Moore P. Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1981, 153: 739-760. PMID: 7040690, DOI: 10.1016/0022-2836(81)90416-2.Peer-Reviewed Original ResearchCholesteryl myristate conformation in liquid crystalline mesophases determined by neutron scattering.
Burks C, Engelman D. Cholesteryl myristate conformation in liquid crystalline mesophases determined by neutron scattering. Proceedings Of The National Academy Of Sciences Of The United States Of America 1981, 78: 6863-6867. PMID: 6947261, PMCID: PMC349152, DOI: 10.1073/pnas.78.11.6863.Peer-Reviewed Original ResearchConceptsLiquid crystalline mesophasesTerminal methyl groupSpecific molecular modelsCrystalline mesophasesEster moleculesConformational rangeCholesterol moietyPure phaseCholesteryl ester moleculesExtended conformationMethyl groupNeutron scatteringMolecular modelConformationIsotropic phaseThree-carbonMoleculesPersistence of atherosclerosisEstersCholesteryl myristateMesophasesMoietyConformation of liquid N-alkanes
Goodsaid-Zalduondo F, Engelman D. Conformation of liquid N-alkanes. Biophysical Journal 1981, 35: 587-594. PMID: 7272453, PMCID: PMC1327550, DOI: 10.1016/s0006-3495(81)84814-x.Peer-Reviewed Original Research
1980
Bacteriorhodopsin is an inside-out protein.
Engelman D, Zaccai G. Bacteriorhodopsin is an inside-out protein. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 5894-5898. PMID: 6934521, PMCID: PMC350178, DOI: 10.1073/pnas.77.10.5894.Peer-Reviewed Original ResearchMeSH KeywordsBacteriorhodopsinsCarotenoidsHalobacteriumNeutronsProtein ConformationScattering, RadiationConceptsAmino acid sequenceSingle bacteriorhodopsin moleculePurple membrane structureAcid sequenceAlpha-helixBacteriorhodopsin moleculesSoluble proteinBiosynthetic incorporationBacteriorhodopsin structureAmino acidsHalobacterium halobiumProteinMembrane structureValineMolecular interiorPurple membranePhenylalanineDifference Fourier techniquesLipid regionsHelixHalobiumMoleculesSequenceBacteriorhodopsinMembraneNeutron diffraction analysis of the structure of rod photoreceptor membranes in intact retinas
Yeager M, Schoenborn B, Engelman D, Moore P, Stryer L. Neutron diffraction analysis of the structure of rod photoreceptor membranes in intact retinas. Journal Of Molecular Biology 1980, 137: 315-348. PMID: 6973637, DOI: 10.1016/0022-2836(80)90319-8.Peer-Reviewed Original Research
1979
Positions of proteins S10, S11 and S12 in the 30 S ribosomal subunit of Escherichia coli
Schindler D, Langer J, Engelman D, Moore P. Positions of proteins S10, S11 and S12 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1979, 134: 595-620. PMID: 395318, DOI: 10.1016/0022-2836(79)90369-3.Peer-Reviewed Original Research[49] On the feasibility and interpretation of intersubunit distance measurements using neutron scattering
Moore P, Engelman D. [49] On the feasibility and interpretation of intersubunit distance measurements using neutron scattering. Methods In Enzymology 1979, 59: 629-638. PMID: 440089, DOI: 10.1016/0076-6879(79)59118-6.Peer-Reviewed Original Research[51] Neutron-scattering measurement of protein pair scattering functions from ribosomes containing deuterated proteins
Engelman D. [51] Neutron-scattering measurement of protein pair scattering functions from ribosomes containing deuterated proteins. Methods In Enzymology 1979, 59: 656-669. PMID: 440090, DOI: 10.1016/0076-6879(79)59120-4.Peer-Reviewed Original Research
1978
X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit
LAUGHREA M, ENGELMAN D, MOORE P. X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit. The FEBS Journal 1978, 85: 529-534. PMID: 348475, DOI: 10.1111/j.1432-1033.1978.tb12268.x.Peer-Reviewed Original Research