2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesisGenetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesis
2000
Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne
Petrache H, Grossfield A, MacKenzie K, Engelman D, Woolf T. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne. Journal Of Molecular Biology 2000, 302: 727-746. PMID: 10986130, DOI: 10.1006/jmbi.2000.4072.Peer-Reviewed Original ResearchMeSH Keywords1,2-DipalmitoylphosphatidylcholineAlgorithmsAmino Acid MotifsAmino Acid SequenceBinding SitesComputer SimulationDimerizationDimyristoylphosphatidylcholineGlycophorinsLipid BilayersModels, MolecularMolecular Sequence DataNuclear Magnetic Resonance, BiomolecularPeptide FragmentsPhosphatidylcholinesProtein BindingProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsConceptsMonomer formLipid bilayersLipid chain lengthUnfavorable electrostatic repulsionLipid typeMolecular dynamics simulationsExplicit lipid bilayerElectrostatic repulsionMonomeric helicesLipid-lipid interactionsInteraction enthalpiesChain lengthDimer structureEnergetic propertiesCHARMM potentialInteraction energyAccessible volumeDynamics simulationsLipid propertiesUnsaturated lipidsEnthalpy calculationsLipid environmentBilayer thicknessAcyl chainsThermodynamic treatmentStatistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions11Edited by G. von Heijne
Senes A, Gerstein M, Engelman D. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions11Edited by G. von Heijne. Journal Of Molecular Biology 2000, 296: 921-936. PMID: 10677292, DOI: 10.1006/jmbi.1999.3488.Peer-Reviewed Original ResearchAmino Acid MotifsAmino Acid SubstitutionAmino Acids, Branched-ChainBiasBinding SitesCell MembraneDatabases, FactualDimerizationGlycineGlycophorinsIsoleucineMathematicsMembrane ProteinsModels, MolecularMolecular WeightOdds RatioPliabilityProtein FoldingProtein Structure, SecondaryThermodynamicsValineThe GxxxG motif: A framework for transmembrane helix-helix association11Edited by G. von Heijne
Russ W, Engelman D. The GxxxG motif: A framework for transmembrane helix-helix association11Edited by G. von Heijne. Journal Of Molecular Biology 2000, 296: 911-919. PMID: 10677291, DOI: 10.1006/jmbi.1999.3489.Peer-Reviewed Original ResearchAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacterial ProteinsBinding SitesChloramphenicol ResistanceCloning, MolecularConsensus SequenceDatabases, FactualDimerizationDNA-Binding ProteinsEscherichia coliGlycophorinsIntracellular MembranesMembrane ProteinsModels, MolecularPeptide LibraryProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsTranscription Factors
1997
Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras
1996
A Zinc-binding Domain Involved in the Dimerization of RAG1
Rodgers K, Bu Z, Fleming K, Schatz D, Engelman D, Coleman J. A Zinc-binding Domain Involved in the Dimerization of RAG1. Journal Of Molecular Biology 1996, 260: 70-84. PMID: 8676393, DOI: 10.1006/jmbi.1996.0382.Peer-Reviewed Original ResearchConceptsRecombination-activating gene 1Zinc-binding motifDimerization domainZinc fingerProtein-protein interactionsLymphoid-specific genesN-terminal thirdZinc finger sequencesAmino acid residuesC3HC4 motifRAG1 sequencesRAG1 proteinTerminal domainHomodimer formationAcid residuesBiophysical techniquesGene 1Energetics of associationMonomeric subunitsMotifProteinFinger sequencesSequenceC3HC4Zinc ionsCoassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †
Peled-Zehavi H, Arkin I, Engelman D, Shai Y. Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †. Biochemistry 1996, 35: 6828-6838. PMID: 8639634, DOI: 10.1021/bi952988t.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsOligomerization of proteinsMembrane-embedded segmentsMembrane-mimetic environmentsAlpha-helical contentAlpha-helical structureLipid/peptide molar ratioS4 regionShaker potassium channelSecondary structure studiesResonance energy transfer measurementsPhospholipid membranesZwitterionic phospholipid vesiclesTransmembrane segmentsMembrane proteinsPhospholipid milieuMimetic environmentsSynthetic segmentsFirst repeatS4 sequenceEel sodium channelS4 segmentEnergy transfer measurementsSecondary structure
1984
Inelastic Neutron Scattering Studies of Hexokinase in Solution
Engelman D, Dianoux A, Cusack S, Jacrot B. Inelastic Neutron Scattering Studies of Hexokinase in Solution. Basic Life Sciences 1984, 27: 365-380. PMID: 6712571, DOI: 10.1007/978-1-4899-0375-4_22.Peer-Reviewed Original ResearchConceptsNeutron scatteringInelastic Neutron Scattering StudyInelastic neutron scatteringInstitute Laue-LangevinNeutron Scattering StudyBiological macromoleculesMolecular dynamicsInelastic scatteringExcited modesScattering StudyScatteringSuch measurementsSuch experimentsDynamic propertiesMacromoleculesSolutionProperties
1982
Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose
Jacrot B, Cusack S, Dianoux A, Engelman D. Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose. Nature 1982, 300: 84-86. PMID: 6752726, DOI: 10.1038/300084a0.Peer-Reviewed Original ResearchConceptsInelastic neutron scatteringInelastic neutronField of biophysicsAtomic motionNeutron scatteringDynamical informationDynamical behaviorLimited experimental informationExperimental informationTemperature dependenceBiological macromoleculesWide frequencyTheoretical understandingMean positionNeutronsScatteringDynamicsInternal mobilityMotionDependenceBiophysicsFrequencyFluctuationsFieldExistence
1978
Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit
Langer J, Engelman D, Moore P. Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit. Journal Of Molecular Biology 1978, 119: 463-485. PMID: 347087, DOI: 10.1016/0022-2836(78)90197-3.Peer-Reviewed Original Research
1975
Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7.
Engelman D, Moore P, Schoenborn B. Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 3888-3892. PMID: 1105567, PMCID: PMC433101, DOI: 10.1073/pnas.72.10.3888.Peer-Reviewed Original Research
1974
The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals
Steitz T, Richmond T, Wise D, Engelman D. The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals. Proceedings Of The National Academy Of Sciences Of The United States Of America 1974, 71: 593-597. PMID: 4595565, PMCID: PMC388057, DOI: 10.1073/pnas.71.3.593.Peer-Reviewed Original Research
1971
Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques
Metcalfe J, Metcalfe S, Engelman D. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques. Biochimica Et Biophysica Acta 1971, 241: 412-421. PMID: 5159791, DOI: 10.1016/0005-2736(71)90041-1.Peer-Reviewed Original ResearchMeSH KeywordsAcetoneAcholeplasma laidlawiiAlcoholsBacterial ProteinsBenzyl CompoundsBinding SitesCell MembraneCentrifugation, Density GradientChemical PrecipitationDetergentsDeuteriumDialysisErythrocytesLipidsMacromolecular SubstancesMagnetic Resonance SpectroscopyMicroscopy, ElectronMycoplasmaSulfatesUltracentrifugationX-Ray DiffractionConceptsRelaxation measurementsMagnetic relaxation measurementsNuclear magnetic relaxation measurementsNuclear magnetic resonance techniquesNative membranesProbe experimentsX-ray diffraction patternsX-ray diffractionMagnetic resonance techniquesSodium dodecyl sulfateLipid bilayer structureProbe techniqueProbe moleculesBenzyl alcoholResonance techniquesDiffraction patternsBilayer regionsDodecyl sulfateBilayer structureElectron microscopyMembrane systemStructural comparisonMeasurementsMembraneDiffraction