2021
Cell Boundaries, How Membranes and Their Proteins Work
White S, von Heijne G, Engelman D. Cell Boundaries, How Membranes and Their Proteins Work. 2021 DOI: 10.1201/9780429341328.Peer-Reviewed Original ResearchHigh-resolution micrographsMembrane proteinsMolecular mechanismsOrganization of lipidsBasic physicsWide arrayCell membranePhysicsProteinCentral discoveryBiologyPhysics studentsMembraneBiophysical foundationConcerted useCell boundariesDiscoveryPhysical chemistryAdvanced undergraduateDiagramArrayFoldingOrganizational principlesStructureMicrographs
2011
First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure
Karabadzhak A, Weerakkody D, Thakur M, Anderson M, Engelman D, Andreev O, Markin V, Reshetnyak Y. First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure. Biophysical Journal 2011, 100: 346a. DOI: 10.1016/j.bpj.2010.12.2088.Peer-Reviewed Original Research
2006
Isolation and Identification of Membrane Protein Oligomers from the E. coli Inner Membrane
Stanley B, Engelman D. Isolation and Identification of Membrane Protein Oligomers from the E. coli Inner Membrane. The FASEB Journal 2006, 20: lb76-lb77. DOI: 10.1096/fasebj.20.5.lb76-d.Peer-Reviewed Original ResearchMembrane protein oligomersMembrane proteinsOligomeric complexesHelical membrane protein structuresNatural bilayersProtein oligomersE. coli inner membraneMembrane protein structuresMembrane protein complexesProtein complex associationsAssembly of proteinsF0 subunitsProtein complexesTransmembrane domainATP synthaseInner membraneFunctional complexProtein movementTransporter complexProtein structureFunctional studiesProtein orientationProteinComplex formationMembrane
2003
Amphipols: polymeric surfactants for membrane biology research
Popot J, Berry E, Charvolin D, Creuzenet C, Ebel C, Engelman D, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey J, Leonard K, Shuman H, Timmins P, Warschawski D, Zito F, Zoonens M, Pucci B, Tribet C. Amphipols: polymeric surfactants for membrane biology research. Cellular And Molecular Life Sciences 2003, 60: 1559-1574. PMID: 14513831, PMCID: PMC11138540, DOI: 10.1007/s00018-003-3169-6.Peer-Reviewed Original ResearchConceptsMembrane proteinsQuasi-irreversible mannerPolymeric surfactantsAmphiphilic polymersMembrane biologyAqueous solutionTransmembrane surfaceAmphipolsBiology researchDissociating characterPutative usesNative stateSurfactantsNovel familyProteinCurrent knowledgeRapid inactivationNoncovalentDetergentsPolymersBiologyCompoundsComplexesInactivationAbsence
2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesisHelical membrane proteins: diversity of functions in the context of simple architecture
Ubarretxena-Belandia I, Engelman D. Helical membrane proteins: diversity of functions in the context of simple architecture. Current Opinion In Structural Biology 2001, 11: 370-376. PMID: 11406389, DOI: 10.1016/s0959-440x(00)00217-7.Peer-Reviewed Original ResearchConceptsHelical membrane proteinsGenome-wide scaleAlpha-helical conformationDiversity of functionsIdentification of motifsMembrane proteinsProtein regionsHelix interactionsPolar sidechainsStructural roleLipid bilayersProteinDiversityMotifUse of deviationsConformationSidechainsFunctionFurther investigationBilayersSequestrationIdentificationConversion of Phospholamban into a Soluble Pentameric Helical Bundle †
Li H, Cocco M, Steitz T, Engelman D. Conversion of Phospholamban into a Soluble Pentameric Helical Bundle †. Biochemistry 2001, 40: 6636-6645. PMID: 11380258, DOI: 10.1021/bi0026573.Peer-Reviewed Original ResearchConceptsMembrane proteinsLipid-exposed surfaceMembrane protein phospholambanLaser lightX-ray scatteringTransmembrane domainHelical bundleWild-type phospholambanOligomeric stateNative phospholambanPolar residuesSimilar foldHydrophobic residuesSoluble proteinReticulum membraneSmall-angle X-ray scatteringHelical pentamersProtein phospholambanSoluble variantProteinNatural proteinsNMR experimentsNative contactsMultiangle laser lightSarcoplasmic reticulum membranesPolar residues drive association of polyleucine transmembrane helices
Zhou F, Merianos H, Brunger A, Engelman D. Polar residues drive association of polyleucine transmembrane helices. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 2250-2255. PMID: 11226225, PMCID: PMC30124, DOI: 10.1073/pnas.041593698.Peer-Reviewed Original ResearchConceptsPolar residuesPolyleucine sequenceHelix associationTransmembrane helix associationInterhelical hydrogen bondingTransmembrane protein functionTransmembrane helicesForm homoProtein functionTransmembrane proteinDrive associationMembrane proteinsDetergent micellesAsparagine residuesGeneral structural featuresBiological membranesResiduesOligomerization specificityProteinSequenceHelixStructural flexibilitySuch interactionsStructural featuresHeterooligomers
2000
Interhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResiduesDesign of single-layer β-sheets without a hydrophobic core
Koide S, Huang X, Link K, Koide A, Bu Z, Engelman D. Design of single-layer β-sheets without a hydrophobic core. Nature 2000, 403: 456-460. PMID: 10667801, DOI: 10.1038/35000255.Peer-Reviewed Original ResearchConceptsSingle-layer β-sheetΒ-sheetHydrophobic coreΒ-sheet segmentsProtein foldingHydrogen-deuterium exchangeOuter surface protein AΒ-sheet structureChemical denaturationSmall-angle X-rayProtein AFoldingMain thermodynamic driving forceSurface protein ABorrelia burgdorferiNuclear magnetic resonanceThermodynamic driving forceMisfoldingNonpolar moietiesHydrophobic effectSolvent resultsProteinAdjacent unitsDenaturationVariants
1999
The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion
McNew J, Weber T, Engelman D, Söllner T, Rothman J. The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion. Molecular Cell 1999, 4: 415-421. PMID: 10518222, DOI: 10.1016/s1097-2765(00)80343-3.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntigens, SurfaceCarrier ProteinsMembrane FusionMembrane ProteinsMolecular Sequence DataMutagenesis, Site-DirectedNerve Tissue ProteinsPliabilityProlineProtein Structure, SecondaryRecombinant ProteinsR-SNARE ProteinsSNARE ProteinsSynaptosomal-Associated Protein 25Syntaxin 1Vesicular Transport ProteinsConceptsJuxtamembrane regionMembrane fusionSNARE-dependent membrane fusionSNARE-dependent fusionHelix-breaking proline residueSNARE proteinsTransmembrane domainSyntaxin 1ACoil domainProline residuesFlexible linkerLipid bilayersCritical determinantFusion efficiencyFusionVAMPDomainProteinRate of fusionSnareVesiclesResiduesLinkerSame changesRegionA Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering
Bu Z, Engelman D. A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering. Biophysical Journal 1999, 77: 1064-1073. PMID: 10423450, PMCID: PMC1300396, DOI: 10.1016/s0006-3495(99)76956-0.Peer-Reviewed Original ResearchMeSH KeywordsBiophysical PhenomenaBiophysicsButyratesDetergentsDimerizationElectrochemistryGlycophorinsHumansIn Vitro TechniquesMembrane ProteinsMicellesMolecular WeightMutationProtein ConformationProtein Structure, SecondaryQuaternary Ammonium CompoundsRecombinant Fusion ProteinsScattering, RadiationSolutionsSolventsX-RaysConceptsDetergent micellesTransmembrane domainAlpha-helical transmembrane domainsSolution small-angle X-ray scatteringTransmembrane helix associationSolution small-angle X-rayHuman erythrocyte glycophorin ASmall-angle X-ray scatteringMembrane proteinsTransmembrane proteinErythrocyte glycophorin ACarboxyl terminusHelix associationAngle X-ray scatteringGlycophorin AStaphylococcal nucleaseSmall-angle X-rayProteinModel systemMicelle contributionX-ray scatteringAngle X-rayDimerizationGyration analysisN-dodecyl
1998
Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization
MacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.Peer-Reviewed Original ResearchConceptsHelix-helix interactionsTransmembrane helix-helix associationTransmembrane helix-helix interactionsHelix-helix associationSingle-point mutantsStructure-based predictionTransmembrane domainMembrane proteinsDimer interfaceDimerization propensitySide-chain hydrophobicityDimer stabilityPoint mutationsSteric clashesMultiple mutationsMutationsSequence dependenceCompensatory effectFavorable van der Waals interactionsMutantsFoldingProteinInteractionDimerizationGlycophorin
1997
A Biophysical Study of Integral Membrane Protein Folding †
Hunt J, Earnest T, Bousché O, Kalghatgi K, Reilly K, Horváth C, Rothschild K, Engelman D. A Biophysical Study of Integral Membrane Protein Folding †. Biochemistry 1997, 36: 15156-15176. PMID: 9398244, DOI: 10.1021/bi970146j.Peer-Reviewed Original ResearchConceptsAlpha-helical integral membrane proteinsIntegral membrane proteinsMembrane proteinsIntegral membrane protein foldingMembrane protein foldingNon-native conformationsStable secondary structureCellular chaperonesBiophysical dissectionBeta-sheet structureProtein foldingIndividual polypeptidesBiophysical studiesStructure of bacteriorhodopsinTertiary structureSecondary structureReconstitution protocolsG helicesPolypeptideF helixProteinPhospholipid vesiclesHelixFoldingBacteriorhodopsinAssessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody
Hunt J, McCrea P, Zaccaı̈ G, Engelman D. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 273: 1004-1019. PMID: 9367787, DOI: 10.1006/jmbi.1997.1330.Peer-Reviewed Original ResearchConceptsMembrane protein complexesIntegral membrane proteinsProtein complexesMembrane proteinsIntegral membrane protein complexPhospholipid vesiclesSmall unilamellar phospholipid vesiclesUnilamellar phospholipid vesiclesMolecular massF. MoodySpatial arrangementNon-ionic detergentIndividual complexesVesiclesModel systemMonomeric bacteriorhodopsinProteinUnknown scopeComplexesAggregation stateRadius of gyrationBacteriorhodopsinDetergentsBilayersDimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras
1996
Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins
Engelman D. Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins. Science 1996, 274: 1850-1851. PMID: 8984645, DOI: 10.1126/science.274.5294.1850.Peer-Reviewed Original ResearchSurface point mutations that significantly alter the structure and stability of a protein's denatured state
Smith C, Bu Z, Engelman D, Regan L, Anderson K, Sturtevant J. Surface point mutations that significantly alter the structure and stability of a protein's denatured state. Protein Science 1996, 5: 2009-2019. PMID: 8897601, PMCID: PMC2143264, DOI: 10.1002/pro.5560051007.Peer-Reviewed Original ResearchConceptsPoint mutationsDenatured stateStopped-flow fluorescenceDenaturant concentrationSolvent-exposed sitesStreptococcal protein GMutantsG mutantTertiary structureGuHCl denaturationEquilibrium intermediatesPosition 53B1 domainProteinCircular dichroismMutationsProtein GGuanidine hydrochlorideSmall-angle X-ray scatteringStructural implicationsX-ray scatteringFluorescenceThrRadius of gyrationDenaturantsA Zinc-binding Domain Involved in the Dimerization of RAG1
Rodgers K, Bu Z, Fleming K, Schatz D, Engelman D, Coleman J. A Zinc-binding Domain Involved in the Dimerization of RAG1. Journal Of Molecular Biology 1996, 260: 70-84. PMID: 8676393, DOI: 10.1006/jmbi.1996.0382.Peer-Reviewed Original ResearchConceptsRecombination-activating gene 1Zinc-binding motifDimerization domainZinc fingerProtein-protein interactionsLymphoid-specific genesN-terminal thirdZinc finger sequencesAmino acid residuesC3HC4 motifRAG1 sequencesRAG1 proteinTerminal domainHomodimer formationAcid residuesBiophysical techniquesGene 1Energetics of associationMonomeric subunitsMotifProteinFinger sequencesSequenceC3HC4Zinc ionsMapping the lipid-exposed surfaces of membrane proteins
Arkin I, MacKenzie K, Fisher L, Aimoto S, Engelman D, Smith S. Mapping the lipid-exposed surfaces of membrane proteins. Nature Structural & Molecular Biology 1996, 3: 240-243. PMID: 8605625, DOI: 10.1038/nsb0396-240.Peer-Reviewed Original ResearchConceptsMembrane proteinsLong transmembrane helixLipid-exposed surfaceThree-dimensional foldHigh-resolution structuresRelative rotational orientationTransmembrane helicesTransmembrane segmentsThird cysteineCysteine residuesLipid environmentHelix interfacePentameric complexProteinLipid interfaceStable complexesHelixResiduesUndergoes exchangeSulphydryl groupsPhospholambanComplexesInternal faceCysteineRotational orientation