2021
Methylation of dual-specificity phosphatase 4 controls cell differentiation
Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, Xavier-Ferrucio J, Jin S, Tran NT, Liu SM, Sun CW, Zhu Y, Zhao Q, Chen Y, Cable L, Shen Y, Liu J, Qu CK, Han X, Klug CA, Bhatia R, Chen Y, Nimer SD, Zheng YG, Iancu-Rubin C, Jin J, Deng H, Krause DS, Xiang J, Verma A, Luo M, Zhao X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Reports 2021, 36: 109421. PMID: 34320342, PMCID: PMC9110119, DOI: 10.1016/j.celrep.2021.109421.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsArginineCell DifferentiationCell LineChildDual-Specificity PhosphatasesEnzyme StabilityFemaleHEK293 CellsHumansMaleMAP Kinase Signaling SystemMegakaryocytesMethylationMice, Inbred C57BLMiddle AgedMitogen-Activated Protein Kinase PhosphatasesMyelodysplastic SyndromesP38 Mitogen-Activated Protein KinasesPolyubiquitinProtein-Arginine N-MethyltransferasesProteolysisRepressor ProteinsUbiquitinationYoung AdultConceptsDual-specificity phosphataseCell differentiationSingle-cell transcriptional analysisP38 MAPKControls cell differentiationE3 ligase HUWE1Knockdown screeningMK differentiationTranscriptional analysisMegakaryocyte differentiationProtein kinaseP38 axisP38 activationPRMT1Transcriptional signatureContext of thrombocytopeniaMK cellsMechanistic insightsPharmacological inhibitionDifferentiationMethylationMAPKPhosphataseUbiquitinylationActivationCombined liver–cytokine humanization comes to the rescue of circulating human red blood cells
Song Y, Shan L, Gbyli R, Liu W, Strowig T, Patel A, Fu X, Wang X, Xu ML, Gao Y, Qin A, Bruscia EM, Tebaldi T, Biancon G, Mamillapalli P, Urbonas D, Eynon E, Gonzalez DG, Chen J, Krause DS, Alderman J, Halene S, Flavell RA. Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021, 371: 1019-1025. PMID: 33674488, PMCID: PMC8292008, DOI: 10.1126/science.abe2485.Peer-Reviewed Original ResearchConceptsRed blood cellsBlood cellsHuman sickle cell diseaseSickle cell diseaseImmunodeficient murine modelKupffer cell densityBone marrow failureMISTRG miceIntrasplenic injectionSCD pathologyCell diseaseMurine modelComplement C3RBC survivalVivo modelHuman cytokinesPreclinical testingHematopoietic stem cellsHuman red blood cellsMarrow failureFumarylacetoacetate hydrolase geneHuman erythropoiesisHuman liverHuman hepatocytesMice
2012
Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor
Cooper DL, Proytcheva M, Medoff E, Seropian SE, Snyder EL, Krause DS, Wu Y. Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor. Journal Of Clinical Apheresis 2012, 27: 235-241. PMID: 22566214, DOI: 10.1002/jca.21232.Peer-Reviewed Original ResearchConceptsHigh-dose G-CSFAutologous HPC transplantationHematopoietic progenitor cellsG-CSFHPC transplantationProgenitor cellsAutologous peripheral blood progenitor cell collectionHigh-dose granulocyte colony-stimulating factorAutologous peripheral blood progenitor cellsRetrospective medical record reviewPeripheral blood progenitor cell collectionPeripheral blood progenitor cellsMedical record reviewGranulocyte-colony stimulating factorGranulocyte colony-stimulating factorBlood progenitor cellsEfficacy of mobilizationProgenitor cell harvestsProgenitor cell collectionColony-stimulating factorPlatelet engraftmentRecord reviewSafety profileGood mobilizersPeripheral blood
2007
Bone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry
Cogle CR, Theise ND, Fu D, Ucar D, Lee S, Guthrie SM, Lonergan J, Rybka W, Krause DS, Scott EW. Bone Marrow Contributes to Epithelial Cancers in Mice and Humans as Developmental Mimicry. Stem Cells 2007, 25: 1881-1887. PMID: 17478582, DOI: 10.1634/stemcells.2007-0163.Peer-Reviewed Original ResearchConceptsEpithelial cancersEpithelial neoplasiaHematopoietic stem cellsNeoplastic environmentStem cellsHematopoietic cell transplantationBone marrow cellsHuman marrowMarrow involvementMarrow cellsSmall bowelCell transplantationLung neoplasiaMouse modelBone marrowMimicryDistant organsNeoplasiaCancerMarrowStable fusionCellsPhenotypeInductionBowel
2003
A simplified approach to stem cell mobilization in multiple myeloma patients not previously treated with alkylating agents
Lerro KA, Medoff E, Wu Y, Seropian SE, Snyder E, Krause D, Cooper DL. A simplified approach to stem cell mobilization in multiple myeloma patients not previously treated with alkylating agents. Bone Marrow Transplantation 2003, 32: 1113-1117. PMID: 14647264, DOI: 10.1038/sj.bmt.1704286.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntineoplastic Combined Chemotherapy ProtocolsBlood Cell CountCombined Modality TherapyCyclophosphamideDatabases, FactualDexamethasoneDoxorubicinFemaleFeverGranulocyte Colony-Stimulating FactorHematopoietic Stem Cell MobilizationHumansLeukapheresisMaleMiddle AgedMultiple MyelomaNeutropeniaPeripheral Blood Stem Cell TransplantationRetrospective StudiesTransplantation, AutologousVincristineConceptsMultiple myelomaEnough stem cellsCells/Autologous stem cell rescueFever/neutropeniaG-CSF beginningStem cell rescueHigh-dose chemotherapyPotential transplant candidatesMultiple myeloma patientsStem cell collectionStem cell toxicityStem cellsAggressive chemotherapyInitial therapyTransplant candidatesAgent therapyConsecutive patientsExcessive morbidityMyeloma patientsCell mobilizationCell rescuePatientsG-CSFCell collection
2001
Breast tumor contamination of PBSC harvests: tumor depletion by positive selection of CD34+ cells
Burgess J, Mills B, Griffith M, Mansour V, Weaver CH, Schwartzberg LS, Snyder EL, Krause DS, Yanovich S, Prilutskaya M, Umiel T, Moss TJ. Breast tumor contamination of PBSC harvests: tumor depletion by positive selection of CD34+ cells. Cytotherapy 2001, 3: 285-294. PMID: 12171717, DOI: 10.1080/146532401317070925.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, MonoclonalAntigens, CD34BiomarkersBreast NeoplasmsCell CountFemaleHematopoietic Stem Cell TransplantationHematopoietic Stem CellsHumansImmunohistochemistryImmunomagnetic SeparationLymphocytesMiddle AgedNeoplastic Cells, CirculatingPredictive Value of TestsReproducibility of ResultsConceptsCD34(-) cell fractionsBrCa cellsPBSC harvestsBRCA patientsCell fractionApheresis harvestsAutologous PBSC supportBreast cancer patientsMedian log depletionHighdose chemotherapyPBSC contaminationPBSC supportTumor contaminationCancer patientsICC detectionCell selectionLog depletionPatientsStandard immunocytochemistryImmunomagnetic enrichmentTumor cellsApheresis collectionsTumor depletionCell numberPrevalence
2000
Rapid reconstitution of Epstein-Barr virus-specific T lymphocytes following allogeneic stem cell transplantation.
Marshall N, Howe J, Formica R, Krause D, Wagner J, Berliner N, Crouch J, Pilip I, Cooper D, Blazar B, Seropian S, Pamer E. Rapid reconstitution of Epstein-Barr virus-specific T lymphocytes following allogeneic stem cell transplantation. Blood 2000, 96: 2814-21. PMID: 11023516, DOI: 10.1182/blood.v96.8.2814.h8002814_2814_2821.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntigen PresentationAntigens, ViralBeta 2-MicroglobulinBiopolymersCD8-Positive T-LymphocytesChildEpstein-Barr Virus InfectionsFeasibility StudiesFemaleGraft SurvivalHematologic NeoplasmsHematopoietic Stem Cell TransplantationHerpesvirus 4, HumanHistocompatibility TestingHLA-A2 AntigenHLA-B7 AntigenHLA-B8 AntigenHumansKidney TransplantationLymphoproliferative DisordersMacromolecular SubstancesMaleMiddle AgedTissue DonorsT-Lymphocyte SubsetsTransplantation ConditioningTransplantation, HomologousViral LoadConceptsEBV-specific T cellsStem cell transplantationT cellsAllo-PBSCTEBV peptidesCell transplantationT lymphocytesAllogeneic peripheral blood stem cell transplantationEpstein-Barr virus–specific T lymphocytesHuman leukocyte antigen (HLA) class I tetramersEBV-specific CD8 T cellsPeripheral blood stem cell transplantationSpecific CD8 T lymphocytesUnrelated cord blood transplantationVirus-specific T lymphocytesBlood stem cell transplantationAllogeneic stem cell transplantationCD8 T cell repertoireAllo-PBSCT patientsEBV genome copiesEpstein-Barr viremiaCD8 T lymphocytesClass I tetramersCord blood transplantationPathogen-specific immunityLiver from bone marrow in humans
Theise N, Nimmakayalu M, Gardner R, Illei P, Morgan G, Teperman L, Henegariu O, Krause D. Liver from bone marrow in humans. Hepatology 2000, 32: 11-16. PMID: 10869283, DOI: 10.1053/jhep.2000.9124.Peer-Reviewed Original ResearchTransplantation of CD34+ peripheral blood cells selected using a fully automated immunomagnetic system in patients with high-risk breast cancer: results of a prospective randomized multicenter clinical trial
Yanovich S, Mitsky P, Cornetta K, Maziarz R, Rosenfeld C, Krause D, Lotz J, Bitran J, Williams S, Preti R, Somlo G, Burtness B, Mills B. Transplantation of CD34+ peripheral blood cells selected using a fully automated immunomagnetic system in patients with high-risk breast cancer: results of a prospective randomized multicenter clinical trial. Bone Marrow Transplantation 2000, 25: 1165-1174. PMID: 10849529, DOI: 10.1038/sj.bmt.1702415.Peer-Reviewed Original ResearchConceptsHigh-risk breast cancer patientsBreast cancer patientsMedian timeCancer patientsIsolated CD34Clinical trialsCell selection systemHematopoietic reconstitutionHigh-risk breast cancerCapacity of CD34Transplantation of CD34Absolute neutrophil countDuration of hospitalizationHigh-dose chemotherapyMulticenter clinical trialBone Marrow Transplantation (2000) 25Incidence of infectionPeripheral blood cellsInter-group differencesProgenitor cell graftsPlatelet engraftmentNeutrophil countCell transplantPlatelet transfusionsPlatelet count
1999
A phase I study of paclitaxel for mobilization of peripheral blood progenitor cells
Burtness B, Psyrri A, Rose M, D’Andrea E, Staugaard-Hahn C, Henderson-Bakas M, Clark M, Mechanic S, Krause D, Snyder E, Cooper R, Abrantes J, Corringham R, Deisseroth A, Cooper D. A phase I study of paclitaxel for mobilization of peripheral blood progenitor cells. Bone Marrow Transplantation 1999, 23: 311-315. PMID: 10100573, DOI: 10.1038/sj.bmt.1701589.Peer-Reviewed Original ResearchConceptsSchedule of paclitaxelDose escalationH infusionPeripheral blood progenitor cellsDose of paclitaxelPhase I trialBlood progenitor cellsStem cell yieldStem cellsTolerable toxicityI trialInfusion scheduleDose levelsPhase IPaclitaxelDoseProgenitor cellsCells/NeuropathyFilgrastimInfusionEscalation
1998
High-dose chemotherapy followed by reinfusion of selected CD34+ peripheral blood cells in patients with poor-prognosis breast cancer: a randomized multicentre study
Chabannon C, Cornetta K, Lotz J, Rosenfeld C, Shlomchik M, Yanovitch S, Marolleau J, Sledge G, Novakovitch G, Srour E, Burtness B, Camerlo J, Gravis G, Lee-Fischer J, Faucher C, Chabbert I, Krause D, Maraninchi D, Mills B, Kunkel L, Oldham F, Blaise D, Viens P. High-dose chemotherapy followed by reinfusion of selected CD34+ peripheral blood cells in patients with poor-prognosis breast cancer: a randomized multicentre study. British Journal Of Cancer 1998, 78: 913-921. PMID: 9764583, PMCID: PMC2063121, DOI: 10.1038/bjc.1998.601.Peer-Reviewed Original ResearchConceptsPoor prognosis breast cancerHigh-dose chemotherapyHaematopoietic recoveryBreast cancerRecombinant human granulocyte colony-stimulating factorBlood cellsRandomized multicentre studyGranulocyte colony-stimulating factorHuman granulocyte colony-stimulating factorPeripheral blood cellsPeripheral blood CD34Peripheral blood progenitorsColony-stimulating factorMobilized blood cellsEpithelial tumor cellsEligible patientsStudy armsMulticentre studyPeripheral bloodConventional chemotherapyStudy groupPatientsChemotherapyBlood CD34CD34