2024
The analytical and clinical validity of AI algorithms to score TILs in TNBC: can we use different machine learning models interchangeably?
Vidal J, Tsiknakis N, Staaf J, Bosch A, Ehinger A, Nimeus E, Salgado R, Bai Y, Rimm D, Hartman J, Acs B. The analytical and clinical validity of AI algorithms to score TILs in TNBC: can we use different machine learning models interchangeably? EClinicalMedicine 2024, 78: 102928. PMID: 39634035, PMCID: PMC11615110, DOI: 10.1016/j.eclinm.2024.102928.Peer-Reviewed Original ResearchTriple-negative breast cancerTumor-infiltrating lymphocytesBreast Cancer Research FoundationPrognostic validityMetastatic triple-negative breast cancerDisease-free survival endpointsHazard ratioHost anti-tumor immunityScored tumor infiltrating lymphocytesTumor-infiltrating lymphocyte scoresTriple-negative breast cancer patientsYears median follow-upTumour-infiltrating lymphocyte assessmentAnti-tumor immunityMedian follow-upIndependent prospective cohortTNBC tumorsPrognostic potentialProspective cohortBreast cancerPrognostic performanceAnalytic cohortFollow-upSchool of MedicineSwedish Society for Medical Research
2020
Trial in progress: A phase I/II, open-label, dose-escalation, safety and tolerability study of NC318 in subjects with advanced or metastatic solid tumors.
Gutierrez M, Hamid O, Shum E, Wise D, Balar A, Weber J, LoRusso P, Shafi S, Rimm D, Tolcher A, Basudhar D, Dujka M, Heller K. Trial in progress: A phase I/II, open-label, dose-escalation, safety and tolerability study of NC318 in subjects with advanced or metastatic solid tumors. Journal Of Clinical Oncology 2020, 38: tps3166-tps3166. DOI: 10.1200/jco.2020.38.15_suppl.tps3166.Peer-Reviewed Original ResearchMetastatic solid tumorsT cell functionSolid tumorsPD-L1 tumor proportion scoreAnti-tumor immune responseNon-small cell lungPhase I/IIPhase 2 doseTumor proportion scoreAnti-tumor immunityKey eligibility criteriaCell functionDose-escalation designBreast cancer subjectsNon-randomized studiesT cell proliferationPrevents tumor growthClass monoclonal antibodyCollection of biopsiesMeasurable diseaseRECIST v1.1Phase 1/2Escalation designTolerability studyImmune suppression
2019
Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy
Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, Zhang J, Song C, Zarr M, Zhou X, Han X, Archer KA, O’Neill T, Herbst RS, Boto AN, Sanmamed MF, Langermann S, Rimm DL, Chen L. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nature Medicine 2019, 25: 656-666. PMID: 30833750, PMCID: PMC7175920, DOI: 10.1038/s41591-019-0374-x.Peer-Reviewed Original ResearchConceptsNormalization cancer immunotherapyTumor microenvironmentSiglec-15Antibody blockadeCancer immunotherapyImmune suppressorMyeloid cellsAntigen-specific T cell responsesB7-H1/PDTumor-infiltrating myeloid cellsB7-H1 moleculesAnti-tumor immunityT cell responsesPotential targetImmune evasion mechanismsInhibits tumor growthMacrophage colony-stimulating factorColony-stimulating factorB7-H1Evasion mechanismsMouse modelHuman cancer cellsTumor growthCell responsesGenetic ablation